Karadeniz Bölgesi
Sistematik Koruma Planlaması
Proje Ekibi:

Orman Genel Müdürlüğü (Orman ve Su İşleri Bakanlığı)

- Projenin OGM Koordinatörü: Talat Memiş, Cemil Ün
- Projenin OGM Sorumlu: Tülay M. Kocaman
- Projenin OGM Uzmanları: Selda Taş, Sibel Cengiz, Ferruh Albayrak, Saygın Kurtoğlu, Selma Akın

Doğa Koruma Merkezi:

- Proje Koordinatörü: Dr. Uğur Zeydanlı
- Proje Yürütücüsü: Didem Ambarlı, Dr. Özge Balkız
- Bilimsel Koordinatör: Doç. Dr. Can Bilgin
- Koruma CBS ve Modelleme Uzmanı: Dr. Ayşe Turak
- CBS Uzmanları: Yeşim Kınıkoğlu, Mustafa Durmuş ve Semra Yalçın
- Projenin Küçük Memeli Danışmanı: Prof. Dr. Mustafa Sözen
- Projenin Kuş Danışmanı: Dr. Kiraz Erciyas ve Nizamettin Yavuz
- Projenin Herpetofauna Danışmanı: Doç. Dr. Çetin İlgaç
- Projenin Bitki Danışmanı: Doç. Dr. Ergin Hamzaoğlu ve Prof. Dr. Mecit Vural
- Projenin Kelebek Danışmanı: Dr. Evrim Karaçetin
- Projenin Büyük Memeli Danışmanı: Hüseyin Ambarlı

Biyolojik Çeşitlilik İzleme Birimi (Bilgi İşlem Dairesi- Orman ve Su İşleri Bakanlığı)

- Projenin BİB Koordinatörü: Etem Akgündüz
- Projenin BİB Sorumlu: Özcan Çekic
- Projenin BİB Uzmanı: Sühendan Karauz
- CBS Uzmanları

WWF Türkiye (Doğal Hayatı Koruma Vakfı)

- Projenin WWF-Türkiye Sorumlu: Başak Avcioglu
Karadeniz Bölgesi Sistematik Koruma Planlaması
Doğa Koruma Merkezi, Ankara, Türkiye
Erişim: [www.dkm.org.tr]

© Doğa Koruma Merkezi (DKM), 2011
Ortadoğu Sitesi, 1589. Sok. No:4, Yüzüncüyl, Ankara
Tel: (312) 287 8144
Faks: (312) 286 6820
www.dkm.org.tr
dkm@dkm.org.tr

1. Basım
Ankara, 2011

Referans gösterme:
Turak, A., Balkız, Ö., Ambarlı, D., Durmuş, M., Özkil, A., Yalçın, S., Özüt, D., Kınıkoğlu, Y.,
Erişim: [www.dkm.org.tr]

Bu kitapta kullanılan bütün fotoğrafların kullanım hakkı fotoğrafcılara aittir. Fotoğraflar,
hak sahibinin yazılı izni olmadan çoğaltılamaz ya da başka amaçlarla kullanılamaz.

Kapak Fotoğrafı: © Uğur Zeydanlı
İçindekiler

İçindekiler .. 5
Karadeniz Bölgesi – Genel Bilgiler ... 10
Sistematik Koruma Planlaması ... 13
A. Genel Özellikleri .. 13
B. Sistematik Koruma Planlaması Aşamaları .. 15
C. Türkiye’de Koruma Çalışmaları ve Sistematik Koruma Planlaması 18
Biyolojik Veriler ... 21
A. Ekolojik Bölger ve Alt-Ekolojik Bölger .. 23
B. Bitki Örtüsü ... 33
C. Yaşambirlikleri ... 41
D. Kuşlar .. 50
E. Büyük Memeliler .. 54
F. Küçük Memeliler ... 57
G. Sürüngen ve Çiftyaşarlar ... 59
H. Kelebekler ... 62
I. Endemik Bitkiler .. 65
K. İklim Değişikliği .. 68
Sosyo-Ekonomik Veriler ... 77
A. Tehdit Analizi: ... 78
B. Maliyet Analizi: .. 83
C. Karadeniz Bölgesi’nde Koruma Fırsatları ... 85
Alandaki Koruma Yapıları .. 93
A. Korunan alanlar ... 93
B. Muhafaza Ormanları ve Muhafaza İşletme SinIFI .. 97
C. Diğer önemli alanlar .. 98
Öncelikli Biyolojik Çeşitlilik Alanlarının Seçimi ... 101
A. Verilerin çalışma birimlerine aktarılması .. 101
B. Önem puanlarının belirlenmesi .. 102
C. Koruma hedeflerinin belirlenmesi .. 105
D. Alanların seçimi .. 106
E. Analiz sonuçları: .. 108
F. Öncelikli Alanlar: .. 113
Kaynakça .. 115
Haritalar

Harita 1.1: Karadeniz Bölgesi Sistematik Koruma Planlaması Projesi alanı

Harita 2.1: Türkiye’deki Sistematik Koruma Planlaması çalışmalarının durumu

Harita 3.1: Türkiye ve çevrenin ekolojik bölgeleri (Olson ve Dinerstein, 2002)

Harita 3.2: Proje alanındaki ekolojik bölgeler ve alt-ekolojik bölgeler

Harita 3.3: Karadeniz Bölgesi yıllık ortalama sıcaklık

Harita 3.4: Karadeniz Bölgesi yıllık ortalama yağış

Harita 3.5: Batı Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları Alt-Ekolojik Bölgesi’ndeki kayak ve karaçam ormanlarının dağılımı

Harita 3.6: Orta ve Batı Karadeniz Yarı Nemli-İlman Çöküntü Ekosistemleri Alt-Ekolojik Bölgesi, kuzulçam ormanlarının dağılımı ve yıllık ortalama yağış farkı

Harita 3.7: Doğu Karadeniz Ardı Yarı Nemli-Soğuk Ormanları Alt-Ekolojik Bölgesi yıllık ortalama yağış

Harita 3.8: Doğu Karadeniz Ardı Yarı Nemli-Soğuk Ormanları Alt-Ekolojik Bölgesi karasallık değeri

Harita 3.9: Orta Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları Alt-Ekolojik Bölgesi karasallık değeri

Harita 3.10: Batı Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları Alt-Ekolojik Bölgesi güneybatıdan gelen Akdeniz iklimi etkisi

Harita 3.11: Fizyonomik sınıflara göre bölgenin bitki örtüsü

Harita 3.12: Alyanslara göre bölgenin bitki örtüsü

Harita 3.13: Bölgenin En geniş alanı kaplayan 10 yaşambirliği

Harita 3.14: Yaşambirliği zenginliği

Harita 3.15: Proje alanında kayıt verisi bulunan lokaliteler (kırmızı noktalar) proje bölgesinin 5 km tampon verilmiş alanında yükselti üzerinde sunulmuştur (beyaz çizgiler il sınırlarını göstermektedir).

Harita 3.16: Kuş türü zenginliği

Harita 3.17: Büyük memeli tür zenginliği

Harita 3.18: Küçük memeli tür zenginliği
Harita 3.19: Sürüngen ve çifteyraçlar tür zenginliği
Harita 3.20: Kelebek türleri zenginliği
Harita 3.21: Endemik bitki tür zenginliği
Harita 3.22: Yıllık ortalama sıcaklık değerleri
Harita 3.23: En yüksek ve en düşük ortalama sıcaklık değerleri farkı (karasallık)
Harita 3.24: Yıllık ortalama yağış
Harita 3.25: Ortalama yağışın mevsimsel farkılığı
Harita 3.26: İklim değişikliğinden etkilenecek alanlar
Harita 4.1: Karadeniz Bölgesi’nde korumanın aciliyeti
Harita 4.2: Karadeniz Bölgesi’nde korumanın zorluğu
Harita 5.1: Karadeniz Bölgesi korunan alanlar haritası
Harita 6.1: Kare sayısına göre hedefe ulaşma oranındaki değişim
Harita 6.2: Karadeniz Bölgesi koruma öncelikli alanlar haritası

Resimler
Resim 1.1: Bolu Dağlarından Gökmar, Sarıçam ve Kayın ormanı
Resim 3.1: Bolu Dağları
Resim 3.2: Köroğlu Dağları
Resim 3.3: Giresun Harşit Vadisi
Resim 3.4: Sürmeli Çalıkuşu (Regulus ignicapillus) ibreli ve karışık ormanlarda görülür (Foto: Mustafa Sözen)
Resim 3.5: Vaşak (Lynx lynx) popülasyonları genelde bölgede iyi durumdadır (Foto: ODTÜ BKL)
Resim 3.6: Doğu Karadeniz’de yayılış gösteren Kısaçulaklı Kırfaresi (Microtus major) (Foto: Deniz Özüt)
Resim 3.7: Doğu Karadeniz’de yayılış gösteren Kafkas semenderi (*Mertansiella caucasica*) (Foto: Deniz Özüt)

Resim 3.8: Doğu Karadeniz’de dar yayılışlı ve yüksek tehdit altında olan bir tür, Kafkasya azameti (*Colias caucasica*) (Foto: Ahmet Baytaş)

Resim 3.9: Bölgesel endemik bir tür, Mecnun güzelesmeri (*Erebia melancholica*). (Foto: Szabolcs Safian)

Resim 3.10: Doğu Karadeniz’de yayılış gösteren endemik bir çalı türü, *Rhodothamnus sessilifolius* (Foto: Özgür Eminağaoğlu)

Resim 3.11: Doğu Karadeniz’de yayılış gösteren endemik bir tür, Kafkas üvezi (*Sorbus caucasica*) (Foto: Özgür Eminağaoğlu)

Resim 3.12: Sera gazı (karbon) salımları ve küresel sıcaklıkların uzun yıllar ortalamalarından sapması (Bilgin ve Türkeş, 2008)

Resim 4.1: Altındere Vadisinde küçükbaş hayvancılık

Resim 4.2: Tehdit Analizi Çalıştayı

Resim 4.3: Tehdit analizinde kullanılan ilişki fonksiyonları. Bu fonksiyonlar, tehdit kaynağından belirli mesafelerde (m1, m2) tehdidin etkisinin nasıl azaldığını tanımlamaktadır; a) doğrusal azalan, b) J azalan, c) S azalan

Resim 4.4: Ekosistem Tabanlı Fonksiyonel Orman Planlaması çalışmasından bir örnek

Resim 4.5: Koruma Fırsatları Katmanı

Resim 4.6: Karadeniz Bölgesinin önemli turizm noktalarından Sümela Manastırı

Resim 4.7: Çoruh Vadisinde tarım

Resim 5.1: Kökez Tabiatı Koruma Alanı

Tablolar

Tablo 3.1: Tür gruplarına göre Karadeniz Bölgesi’nde yayılış gösteren türlerin sayıları (tür grubundaki tüm türler, endemik türler, tehdit altında türler ve hedef türler)

Tablo 3.2: Sadeleştirilmiş ve gruplanmış alyanslar

Tablo 3.3: En geniş alanı kaplayan 10 yaşambırlığı

Tablo 3.4: Yaşambırlıkları ve alanları
Tablo 3.5: Proje bölgesinde yaşadığı bilinen tehdit altında kuş türleri ve küresel IUCN statüleri

Tablo 3.6: Proje bölgesinde yaşadığı bilinen büyük memeli türleri ve bu türlerin küresel IUCN statüleri. Analize dahil edilenlerin adları koyu renkle yazılmıştır.

Tablo 3.7: Analize dahil edilen hedef küçük memeli türleri: Endemizm ve tehdit kategorileri

Tablo 3.8: Sistematik Koruma Planlaması çalışmasına dahil edilen hedef herpetofauna türleri ve bu türlerin endemiklik ve tehdit kategorileri

Tablo 3.9: Türkiye ve Karadeniz için minimum ve maksimum değişim değerleri

Tablo 3.10: Türkiye ve Karadeniz için minimum ve maksimum değişim değerlerinin aralıklara bölünerek gruplara ayrılmış

Tablo 4.1: Karadeniz Bölgesi’nde biyolojik çeşitliliği tehdit eden insan faaliyetleri

Tablo 5.1: Karadeniz bölgesindeki korunan alanlar

Tablo 5.2: Karadeniz bölgesinde, diğer yaklaşımlarla tespit edilmiş çeşitlilik ise tür grupları için önemli alanlar.

Tablo 6.1: Senaryoların oluşturulma amaçları ve kıyaslar

Tablo 6.2: Analizde kullanılan algoritmalar ve parametreler

Tablo 6.3: Koruma öncelikli alanların mevcut korunan alanlar ile örtüşme miktarı

Tablo 6.4: Farklı senaryolar ve katsayıları

Tablo 6.5: Optimum alan setini oluşturutan kareler (koordinatlar UTM Zon 37 olarak verilmiştir)
Bölüm 1

Karadeniz Bölgesi – Genel Bilgiler

Karadeniz bölgesi yaklaşık 135.000 km²’lik yüzey alanı ile Türkiye’nin %18’lik bir kısmını kapsar. Gürcistan sınırlarıyla Adapazarı Ovası arasında kalan Karadeniz Bölgesinin batı – doğu uzantısı 1000 km’yi bulur.

![Harita 1.1: Karadeniz Bölgesi Sistematik Koruma Planlaması Projesi alanı](image.png)

Bölge su kaynakları açısından oldukça zengindir: Kızılırmak, Yeşilırmak ve Çoruh gibi büyük debili nehirlerin yanında dağı vadilerinde yer alan ve hızlı akan dereler mevcuttur.

Resim 1.1: Bolu Dağlarından Göknar, Sarıçam ve Kayın ormanı

Bölgenin gelişmişlik düzeyine bakıldığında ilk göze çarpan iller liman kentleri olan Samsun ve Trabzon’dur. Artvin, Ordu ve Sinop gibi iller de yüksek okur yazarlık oranını ile ön plana çıkmaktadır. Bölgenin dağılık yapısı ve eğimli yamaçları şehirleşme dokusu ve yerleşim şeklinde de belirleyici olmuştur. Büyük merkezlerin hepsi kıyı boyunca ve az sayıdaki
Bölüm 2

Sistematik Koruma Planlaması

A. Genel Özellikleri

Sistematik Koruma Planlaması (SKP) kavramı kısaca koruma hedefleri net bir şekilde tanımlanmış, biyolojik çeşitliliğin bütününün kahraman (uzun vadeli) bir şekilde temsil edildiği ve sadece korunan alanlarla sınırlı olmayan bir koruma yönetimi sistemi oluşturulması süreci olarak tanımlanabilir. Biyolojik ve sosyo-ekonomik veriler kullanılarak çalışılan bölge için bir koruma sistemi planlanur. Bunun için kullanılan biyolojik ve sosyo-ekonomik veri kümeleri şu şekildedir:

1. Biyolojik
 a. Tür dağılım verileri
 b. Ekolojik yaşam alanları haritası
 c. Ekolojik ve evrimsel süreçler

2. Sosyo-ekonomik
 a. Koruma yapmanın mali bedeli
 b. Biyolojik çeşitliliğe yönelik tehditler
 c. Koruma ve kalkınmayı birlikte gerçekleştirebileme fırsatları

Büttüncül Yaklaşım: Koruma sistemi planlanması ulusal veya bölgesel düzeyde yapılır. SKP’nin en önemli özelliği tek tek alanlar yerine bütünle bir yaklaşılma bütün ülkeyi ya da bölgeyi içeren bir değerlendirmeye yapması ve koruma yönetimi planının bu şekilde üretmesini sağlamaya çalışmasıdır.

Biyolojik Aşıdan Büttüncül Yaklaşım: Sadece tür verileri kullanılmaz, biyolojik çeşitliliğin diğer öğeleri de (ör: yaşam alanları, ekosistemler, ekolojik ve evrimsel süreçler) mümkün...
olduğunca değerlendirimeye katılır. Diğer birçok yaklaşım sadece türler üzerinden veya tek bir tür grubu üzerinden yapılmaktadır.

Temsiliyet: Planlama alanı içerisindeki biyolojik çeşitlilik öğelerinin (ör: türler, yaşambirlikleri, ekosistemler, ekolojik ve evrimsel süreçler) oluşturulunan koruma sistemi içerisinde dahil edilmeye oranı o alan için temsiliyet derecesini verir. Temsiliyet koruma sistemleri için en önemli kriterlerden biridir ve temsil edilmeyen biyolojik çeşitlilik unsurları koruma boşluğu olarak değerlendirilir. Ancak SKP yaklaşımı temsiliyet ve verimliği birlikte ele alır. Yani mümkün olduğuna çok koruma hedefini mümkün olduğuna az sayıda alan kullanarak koruma sistemi içerisinde dahil etmeye çalışır.

Verimlilik: Temelde mümkün olduğuna çok koruma öğesini mümkün olduğuna az yerde koruma sistemi içerisinde almak için temsiliyet derecesini verir. Temsiliyet koruma sistemleri için en önemli kriterlerden biridir ve temsil edilmeyen biyolojik çeşitlilik unsurları koruma boşluğu olarak değerlendirilir. Ancak SKP yaklaşımı temsiliyet ve verimliği birlikte ele alır. Yani mümkün olduğuna çok koruma hedefini mümkün olduğuna az sayıda alan kullanarak koruma sistemi içerisinde dahil etmeye çalışır.

Ekolojik ve Evrimsel Süreçler: Temsil edilen öğelerin söz konusu alanda varlığını uzun vadeli olarak devam ettirebilmesinin garanti altında olması olarak tanımlayabiliriz.

İklim Değişikliği: İklim değişikliğinin türlerin ve ekosistemlerin yayıldığı ilgili sebebi sebep olacağı önemli değişiklikleri göz önünde bulundurursak kalıcı bir konsolide yaklaşımı açacağı ortaya çıkar. Eğer türlerin, yaşambirliklerinin ve ekosistemlerin bulundukları yerler 10 yıl sonra farklı olacaksa bizim sadece bugünkü dağılımlarına göre değil gelecekteki dağılımlarını da göz önünde bulundurarak bir koruma sistemi geliştirmemiz gerekir.

Önceliklendirme: Analizler ve paydaş toplantılı sonunda biyolojik çeşitlilik açısından önemli alanlar belirlendiğten sonra bunların koruma önceliklendirmesinin yapılması gereklidir. Çünkü koruma girişimleri etaplar halinde planlanıp uygulan bir dönemde yapılmadığı zaman koca bir bölge veya ülkenin hepsi için bir kerede girişimde bulunmak gerçekçi değildir.

Uygulama: Yapılan çalışmanın akademik bir çalışma olarak kalmaması ve koruma eylemlerine geçirilmesi için uygulama aşaması çalışmanın en başından itibaren göz önünde bulundurulmalıdır. Bunun için önerilen “Öncelikli Biyolojik Çeşitlilik Alanları” için genel koruma, sürdürülebilir kaynak kullanımı ve sürdürülebilir kalkınma yaklaşımları tanımlanmalıdır.

B. Sistematik Koruma Planlaması Aşamaları

1. Bölgedeki biyolojik çeşitliliğe ilişkin verilerin derlenmesi ve temsilcilerin saptanması

Çalışılan ekolojik bölge “planlama birimi” dediğimiz küçük birimlere ayrılır. Veri toplama, analiz, değerlendirme vb. her aşama bu birimler bazında gerçekleştirilir. SKP, bu birimler bazinda çalışır; biyolojik çeşitlilik, sosyo-ekonomik durum, koruma maliyeti ve fırsatlar açısından tüm bölgedeki planlama birimlerini karşılaştırır ve “öncelikli alan kümessini” bu birimlerden seçerek oluşturur. Havzalar, koordinat sistemi gridleri (5x5 km UTM kareleri, 10x10 km UTM kareleri) ya da eşit büyüklükteki geometrik şekiller (ör: altıgenler) planlama birimi olarak seçilabilir.
2. Koruma hedeflerinin belirlenmesi

Biyoçeşitliliğin tümünü temsил ettiği düşündüğümüz temsilciler, belirli miktarda ya da oranda koruma sisteminin içinde olmalı, herhangi biri dışından kalmamalı ya da gerektiğinden az yerde korunamalıdır. SKP çalışmalarında koruma hedeflerinin sayısal olarak ifade edilmesi gerekir.

3. Var olan koruma sistemindeki eksikliklerin saptanması

Sistematik Koruma Planlamasının bu aşamasında mevcut koruma ağının temsiliyet özelliği hesaplanır. Diğer bir deyişle belirlenen biyoøjik çeşitlilik hedeflerinin ne kadarı mevcut koruma sistemi içerisinde yer almaktadır, ne kadarı dışında kalmaktadır ve ne kadarı doğru bir oranda temsil edilmektedir. Mevcut koruma sisteminde yeterince temsil edilmemsemi burada bir koruma boşluğu var demektir. Boşluk Analizi (GAP Analizi) denen bu basamakta koruma boşlukları belirlenir.

4. Koruma Yönetimi için yeni alanların seçimi

Bu aşamada koruma boşluklarını doldurmak için mevcut korunan alanları tamamlayacak yeni alanlar belirlenir. Ancak bu alanlar belirlenirken çok kriterli bir optimizasyon yapılması gereklidir ve genellikle bu süreç oldukça yoğun ve karışık analizleri gerektirir.

İdeal bir SKP çalışmasında alan seçimi aşamasında dört temel bileşeni göz önünde bulundurmak gerekir:

1. Biyoøjik çeşitlilik açısından önemi,
2. Tehdidin aciliyeti ve yoğunluğu
3. Koruma yapmanın maliyetinin düşük olması,
4. Koruma fırsatları (ekonomik, sosyal, kurumsal vb.)

Herhangi bir alan, koruma için önerilirken bu dört kriterle göre değerlendirilme yapılarak koruma sistemine dahil edilmesi önerilir. Önceliklerinde ve seçim süreçinin nicel kriterlere dayanması ve tekrarlanabilir olması için bilgisayar yazılımları kullanılmaktadır. Belirlenenek özel kriterlere uygun yeni yazılımlar hazırlanabileceğini gibi, C-Plan, ResNet, Marxan, Sites gibi hazır yazılımların kullanılması da söz konusu olabilir.
5. Korumanın hayata geçirilmesi

Bu aşama, öncelik sıralamasına uygun olarak yeni alanların koruma sistemine dahil edilmesini, her bir alan için nicel hedeflerin konulmasını ve yönetim stratejilerinin geliştirilmesini, sonra da bu stratejilerin uygulanmasını içermektedir. Koruma hedeflerinin belirlenmesi için koruma alanındaki biyo(loji) çeşitliliğin ve ekolojik işlevlerin bilinmesi, süreçlerin insan etkinliklerinden nasıl etkilendiğini öngörülebilmek gerekkemektedir. Bu noktada artık bölgesel ölçekten yerel ölçege geçilir. Koruma hedeflerine ulaşılması açısından öngörülmeyen durumlarla karşılaşıldığında, 4. aşamanın tekrarlanması söz konusudur.

Koruma yönetimi, her zaman yasal koruma statüsü getirmek anlamına gelmez. Bunun gerekli olmadığı, korumanın başka yollarla da sağlanabileceği yerlerde biyo(loji) çeşitlilik üzerindeki baskılarla göre farklı çözümler de üretilebilir. Örneğin otlamaların düzenlenmesi, biyo(loji) çeşitlilik tabanlı ormanlık uygulamaları, kaçak avcılığın önlenmesi, nadir türlerin toplanmasının denetlenmesi gibi faaliyetler için her zaman koruma alanlarına ihtiyaç yoktur.

6. Korumanın sürekliliğinin sağlanması

Koruma çalışmalarının başarılı ve kalıcı olması için bu alanlardaki biyo(loji) çeşitliliğin izlenmesi ve koruma çabalarının başarısının belirli aralıklarla ölçülmesi gerekmektedir. Yönetim stratejilerinin ve uygulamalarının başarılı olup olmadığını sürekli olarak izlenebilmek için bir takım ölçülebilir göstergeler geliştirilmesi ve değerlendirmelerin bu göstergeler ile yapılması gerekmektedir. Ekolojik süreçlerin sağlıklı bir biçimde yürütüldüğünü ortaya koyan bu göstergeler, temsilci türlerin yoğunluğu, göç hareketleri gibi biyo(loji) parametreler olabildiği gibi ekosistemın fiziksel özellikleri hakkında bilgi veren toprağın nemliliği ve tuzluluğundaki değişimleri gibi parametreler de olabilir. Yine tehditler açısından, alandaki insan etkinliğindeki değişimleri yansitan göstergeler de kullanmak önemlidir.
C. Türkiye’de Koruma Çalışmaları ve Sistematik Koruma Planlaması

Ülkemizde doğa koruma çalışmalarının kurumsal bir hal alması Orman Genel Müdürlüğü’nün altında Milli Parklar Dairesi’nin kurulması ve 1958’de Yozgat Çamlığı’nın Milli Park ilan edilmesi ile başlamıştır. Ancak yakın yıllarda ilan edilen alanların seçilmesinde rol oynayan faktörlerde baktığımızda bunların çok da sistematik bir şekilde gerçekleştirilemediğini söyleyebiliriz. Bunun yerine aşağıdaki sıralanan değerler geçmişte korunacak alanların seçilmesinde ön plana çıkmıştır:

- Görsel açıdan güzel yerler olması,
- Rekreasyon amaçlı kullanılabilecek özellikle olması,
- Yaşlı ve el değmemiş orman parçaları olması,
- Ulaşılamayacak, uzak yerlerde kalmış doğa parçaları (özellikle de ormanlık alanlar) olması,
- Politik baskılar ve yerel yöneticilerin talepleri,
- Doğa koruma örgütlerinin baskı.

Daha geniş perspektifli bir çalışma ise Akdeniz Bölgesi’nde DHKD-WWF Türkiye tarafından yapılan, DKM uzmanları tarafından desteklenmiş Akdeniz Boşluk Analizi çalışma olmuştur. Bu çalışma gerek teknik yetersizlikler, gerekse maddi sıkıntılar nedeni ile zorlu bir süreç geçirmişse de, Türkiye’de ulusal bir boşluk analizi programının kurulması için gerekli teknik altyapı ve tecrübenin oluşmasını sağlamıştır (Zeydanlı ve ark., 2005).

Programını” başlatmıştır. 2007 yılında BİB bünyesinde Nuh’un Gemisi Biyolojik Çeşitlilik Veritabanı kurulmuştur.

Ulusal ölçekte gerçekleşчрежден en kapsamlı çalışmalardan biri de Doğa Derneği tarafından yapılan Önemli Doğa Alanları (ÖDA) çalışmasıdır. Türkiye’nin küresel öneme sahip doğal alanlarını belirlemek amacıyla pek çok canlı grubu (bitkiler, kuşlar, kelebekler, sürüngenler, memeliler, iç su balıkları ve kızböcekleri) hassasklık vebensersizlik kriterlerine göre değerlendirilmiş ve 305 ÖDA tanımlanmıştır (Eken ve ark., 2004).

2002-2004 yılları arasında ODTÜ ve TEMA’nın Bakü-Tiflis-Ceyhan Boru Hattı şirketinin desteği ile gerçekleştirildiği Aşağı Kafkaslar Boşluk Analizi Projesi sırasında SKP’nin Türkiye’de uygulanabilirliği açısından gerekli pek çok yöntem geliştirilmiştir.

DKM’nin koordinasyonunda “Anadolu Çaprazı Biyolojik Çeşitlilik Projesi” ile en kapsamlı SKP çalışması gerçekleştirilmiş, bir çok yeni yaklaşım uygulanmış ve Türkiye adapte edilmiştir.

Karadeniz SKP çalışması da bu proje yaklaşımasını temel almıştır. Önmüzdeki dönemde en temel adımlardan biri yapılan SKP çalışmalarının sonuçlarının haya aktarılması olacaktır. Diğer bir temel adımda NATURA 2000 alanlarının belirlenmesi sürecinde SKP yaklaşımanın nasıl kullanılacağını tanımlanması olacaktır.
Türkiye henüz SKP sürecinin başındadır, ancak hızlı sanayileşme ve gelişme sürecindeki ülkemizde bu planlama mantığı, ne kadar erken uygulama sahası bulabilir ise doğal kaynakların korunmasında da o kadar başarılı olacaktır. Burada en önemli noktalardan biri ilgili devlet kurumlarının bu çalışmaların sonuçlarını daha sistemli bir halde değerlendirimeye almaları olacaktır.

Harita 2.1: Türkiye’deki Sistematik Koruma Planlaması çalışmalarının durumu
Bölüm 3

Biyolojik Veriler

Karadeniz Bölgesi, barındırdığı diğer tür gruplarında olduğu gibi, memeli ve kuşlar açısından da Avrupa-Sibirya kökenli unsurların ağırlığta olduğu bir coğrafyadır. Son buzul çağının bitişiyle birlikte (20.000 yıl önce) Anadolu’nun güneyinde, Balkanlar’da ve Yakın Doğu’da korunaklı bölgelere sığınmış birçok soğuk ve ılıman kuşak türü, kuzeye doğru yılda 0,1-1 km ve yükseklerde doğrudan 10-100 m arasında değişen hizlarda yayılmasına başlamıştır. Bu türlerin büyük çoğunluğu günümüz koşullarını yerleşmesiyle birlikte ancak daha kuzeydeki coğrafyalarda yaşam olanakları bulmuş ve ülkemizde yok olmuşlardır. Ancak bu gruba dahil birçok canlı türü, Karadeniz Bölgesi’nin nispeten serin, bol ve dengeli yağışlı ikliminde kalmayı başarmıştır. Bu gibi türlerin güney yayılış sınırları, genellikle bir coğrafi birim olarak Karadeniz Bölgesi ile örtüşür; bu sınırın güneybatı sınırı ise Uludağ’a (Bursa) kadar uzanır. Bu sınırın güneyinde söz konusu türlerin birçoğunun kuzeyinde görülemez; sadece bazı türler yüksek dağlarda tek tük kalıntılar halinde bulunmaktadır. Bunun tek istisnası özel bir iklim adaci oluşturutan Amanos Dağları’dır; ancak buradaki Avrupa-Sibirya flora ve fauna unsurları çok daha kalabalık Akdeniz unsurlarıyla çevrilmiştir.

Resim 3.1: Bolu Dağları

Karadeniz Bölgesi’nin kıyıdan uzak iç kesimleri daha kuraktır ve karasallık daha yüksektir. Bu iç kesimlerde yer yer İran-Turan unsurları görülebilir, ancak bunların yayılışları çok sınırlıdır. Bunun bir istisnası 2500 m’nin üzerindeki dağlarda (bölgeizde esas olarak Kaçkarlar’da) yaşayan yüksek dağ kuş faunasıdır. Urkeklilik (Tetraogallus caspius), Sürmeli Dağbülübü (Prunella ocellaris), Alamecek (Rhodophechys sanguineus) gibi türlerin Iran, Orta Asya, hatta bazen Tibet’e kadar giden yayılışlarının en batı ucundan, Anadolu Çaprazı (Anadolu Diyagonalı) olarak bilinen ve Kaçkarlar’la bağlantılı dağ sıraları yer alır. Söz konusu türler Anadolu Çaprazı üzerinden Garoslar’a ulaşırlar, böylece Karadeniz ve Akdeniz bölgeleri arasındaki belli başlı tek bağlantıyı oluştururlar.

Tablo 3.1: Tür gruplarına göre Karadeniz Bölgesi’nde yaygın gösteren türlerin sayıları (tür grubundaki tüm türler, endemik türler, tehdit altındaki türler ve hedef türler)

<table>
<thead>
<tr>
<th>Tür Grubu</th>
<th>Toplam Tür Sayısı</th>
<th>Endemik Tür Sayısı</th>
<th>Bölgesel Endemik Tür Sayısı</th>
<th>Tehdit Altındaki Tür Sayısı*</th>
<th>Hedef Seçilen Tür Sayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endemik Bitkiler**</td>
<td>-</td>
<td>274***</td>
<td>-</td>
<td>-</td>
<td>133</td>
</tr>
<tr>
<td>Büyüklük Memeliler</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Küçük Memeliler</td>
<td>35</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Sürüngen ve Çiftyaşarlar</td>
<td>52</td>
<td>2</td>
<td>12</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Kuşlar</td>
<td>214</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>173</td>
</tr>
<tr>
<td>Kelebekler</td>
<td>250</td>
<td>15</td>
<td>5</td>
<td>26</td>
<td>220</td>
</tr>
</tbody>
</table>

* IUCN tehdit kategorisi VU, EN, CR veya DD olan türler
** IUCN tehdit kategorisi EN, CR veya DD olan türler
*** Bu sayı bölgedeki tüm endemik türleri değil nadir endemikleri kapsamaktadır.
A. Ekolojik Bölgeler ve Alt-Ekolojik Bölgeler:

Harita 3.1: Türkiye ve civarının ekolojik bölgeleri (Olson ve Dinerstein, 2002)

Bu sınırlar daha sonra topografyaya, bitki örtüsüne, iklimsel özelliklere ve çeşitli türlerin dağılımlarına göre tekrar gözden geçirilmiştir. Ancak özellikle bölgenin güney batı ucunun Akdeniz, Karadeniz ve İç Anadolu iklim tiplerinin kesiştiği bir bölgede bulunması bu bölümde ekolojik bölgesinde sınırının tespit edilmesini oldukça zorlaştırmıştır.
Çalışma alanı Karadeniz kıyı bölümü ve Karadeniz ardını temsil eden iki ekolojik bölgeyi barındırmaktadır:

1. Karadeniz Nemli-Ilıman Karışık Ormanları
2. Karadeniz Ardı Yarı Nemli-Soğuk Orman ve Çalılıkları

Bu ekolojik bölgeler coğrafi, iklimsel, topografik ve bitki örtüsü farklılıklarına göre kendi içlerinde de alt-ekolojik bölgelere ayrılmıştır. Bu alt-ekolojik bölgeler özellikle yaşambirliklerinin oluşturulmasında kullanılmıştır.

1. Karadeniz Nemli-Ilıman Karışık Ormanları
 - Doğu Karadeniz Nemli-Ilıman Karışık Ormanları
 - Orta Karadeniz Nemli-Ilıman Karışık Ormanları
 - Batı Karadeniz Nemli-Ilıman Karışık Ormanları
 - Orta ve Batı Karadeniz Yarı Nemli-Ilıman Çöküntü Ekosistemleri

2. Karadeniz Ardı Yarı Nemli-Soğuk Orman ve Çalılıkları
 - Doğu Karadeniz Ardı Yarı Nemli-Soğuk Ormanları
 - Orta Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları
 - Batı Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları

Harita 3.2: Proje alanındaki ekolojik bölgeler ve alt-ekolojik bölgeler
1. Karadeniz Nemli-Ilıman Karışık Ormanları Ekolojik Bölgesi

- Doğu Karadeniz Nemli-Ilıman Karışık Ormanları Alt-Ekolojik Bölgesi

Harita 3.3: Karadeniz Bölgesi yıllık ortalama sıcaklık

Harita 3.4: Karadeniz Bölgesi yıllık ortalama yağış

Bölgenin kıysı kesimindeki bitki örtüsü büyük oranda tahrip edilmiş durumdadır. Doğal bitki örtüsünün yerini doğuda çay bahçeleri ve batıda da fındık alanları almıştır.

- **Orta Karadeniz Nemli-İlman Karışık Ormanları Alt-Ekolojik Bölgesi**

Bu alt-ekolojik bölge sahilde Ordu’dan Sinop-Dikmen’e kadar uzanır, iç kısmında da Kelkit ve Kızılrırmak çöküntülerinin olduğu Niksar, Erbaa, Taşova, Ladik, Havza, Vezirköprü, Durağan hattına kadar girer.

Bölgenin ortalama yağış miktarı Ordu civarında en yüksek değere ulaşır ve batıya doğru azalır. Ordu’da 1000-1200 mm arasındaki ortalama yağış değeri, Samsun’da 700 mm’ye kadar düşmektedir. Ortalama sıcaklık ise kıysı boyunca 16-12 °C arasındadır, iç kısımlarda ise 8-12 °C’de düşmektedir.

- **Batı Karadeniz Nemli-İlman Karışık Ormanları Alt-Ekolojik Bölgesi**

Orta ve Batı Karadeniz Yarı Yılıncı Soğuk Ormanları ve Çalılıkları Alt-Ekolojik Bölgesi

Harita 3.6: Orta ve Batı Karadeniz Yarı Nemli-Ilıman Çöküntü Ekosistemleri Alt-Ekolojik Bölgesi, kızılçam ormanlarının dağılımı ve yıllık ortalama yağış farkı

2. Karadeniz Ardı Yarı Nemli-Soğuk Orman ve Çalılıkları Ekolojik Bölgesi

- Doğu Karadeniz Ardı Yarı Nemli-Soğuk Ormanları Alt-Ekolojik Bölgesi

Doğu Karadeniz Dağları’nın ardından yağış büyük bir düşüş gösterirken karasallık niteliği de artmaktadır (bkz. Harita 3.7 ve Harita 3.8). Doğu Karadeniz Dağları 3000 m’yi geçen zirvesi ile Karadeniz’in gelen yağışın büyük bir kısmını tutarken günrey cephaya geçmesine büyük oranda engel olur. Bu altekolajik bölgede yıllık ortalama yağış yüksekliği göre 1500 m ile 800 mm arasında değişmektedir. Yıllık ortalama sıcaklık da 0 °C’ye kadar düşmektedir. Gece ve gündüz arasındaki sıcaklık farkı kıyı bölgelerle karşılaştırıldığında belirgin bir şekilde yükselmektedir. Bu da bölgedeki karasal iklimin etkisi olarak kabul edilmelidir.
Harita 3.7: Doğu Karadeniz Ardi Yarı Nemli-Soğuk Ormanları Alt-Ekolojik Bölgesi yıllık ortalama yağış

Harita 3.8: Doğu Karadeniz Ardi Yarı Nemli-Soğuk Ormanları Alt-Ekolojik Bölgesi karasallık değeri

Bu bölgede yıllardır devam eden hayvancılık faaliyetleri kapsamında aşırı otlama sonucu yer yer bitki örtüsü bozulmuştur. Bunun dışında bu bölge ormanlarının kendini yenileme kapasitesi kıyı bölümüne göre daha az olduğu için yer yer orman örtüsü zayıflaması, taç kapalılığı düşmüştür.

Resim 3.2: Köroğlu Dağları
Orta Karadeniz Ardi Yarı Nemli-Soğuk Ormanları ve Çalılıkları Alt-Ekolojik Bölgesi

Harita 3.9: Orta Karadeniz Ardi Yarı Nemli-Soğuk Ormanları ve Çalılıkları Alt-Ekolojik Bölgesi
karasallık değeri

Bu alt-ekolojik bölgenin bitki örtüsünü karakterize eden türler Doğu Kayını, Sançam ve Meşe türleridir. Doğu Kayını daha alçak rakımlarda, kıyı etkisinin yüksek olduğu ilman bölgelerde hakimken, sançam daha soğuk ve kuru bölgelerde hakimdir. Meşe çalılıkları ise karasal etkinin daha yüksek olduğu bölgeleri kaplamaktadır. İç Anadolu bozkırları ve buraya ait türler de güney sınırından bu ekolojik bölgeye yaklaşmakta yer yer de bölge sınırları içerisine girmektedir.
Batı Karadeniz Ardi Yarı Nemli-Soğuk Ormanları ve Çalılıkları Alt-Ekolojik Bölgesi

Harita 3.10: Batı Karadeniz Ardi Yarı Nemli-Soğuk Ormanları ve Çalılıkları Alt-Ekolojik Bölgesi güneybatıdan gelen Akdeniz iklimi etkisi
B. Bitki Örtüsü

Biyolojik çeşitlilik koruma ve doğal kaynak kullanımı ile ilgili çalışmalarda bitki örtüsü en fazla yararlanılan veri küme lerinden biri olmuştur. Bu katman sayesinde alanın genel yapısı, bitki ve hayvan türlerinin dağılımı hakkında bilgi edinmemiz mümkün olmaktadır (Scott ve ark., 1993; Margules ve Pressey, 2000; Csuti ve Crist, 2000).

Ancak bitki örtüsünün dinamik ve kompleks yapısı, ekolojik tipleri ve varyantları göz önünde bulundurduğumuzda istenen kalitede bir sınıflandırma gerçekleştirmek o kadar da kolay bir çalışma değildir. En azından şu anda bile bütün dünyada genel olarak kabul gören bir sınıflandırma sistemi bulunmamaktadır. Farklı kurumlar farklı sınıflandırma yaklaşımları uygulamaktadır.

Bitki Örtüsü Haritasının Hazırlanışı (Yöntem)

1. Fizyonomik Sınıf: Baskın yaşam formu

Orman (Kapalı ağaç tacına sahip bitki örtüsü): Ağaçlar baskı yaşam formudur, taç kapalılığı % 40’dan fazla ve yerden en az 8 m yükseklikte olmalıdır (Adams, 1998).

Seyrek Orman (Açık ağaç tacına sahip bitki örtüsü): Taç kapalılığı % 40-25 arasında ve en az yerden 8 m yükseklikte olmalıdır (Adams, 1999).

Çıplak Alan: Bitki örtüsünün % 5’ten az olduğu alanlardır.

2. Fizyonomik Alt Sınıf: Yaşam stratejisi ve yaprak şekli

Hiyerarşik sınıflandırma sisteminin ikinci basamağıdır. Bu birime göre bitki örtüsü yaşam stratejisine (growth form) ve yaprak formuna göre gruplara ayrılmaktadır.

Odunsu Sınıflar:

I-I Her dem Yeşil
I-II Yaprak Döken
I-III Karışık Her dem Yeşil-Yaprak Döken
II-I İğne Yapraklı
II-II Geniş Yapraklı
II-III Mumsu Yapraklı
II-IV Karışık İğne-Geniş Yapraklı
II-V Karışık İğne-Mumsu Yapraklı
II-VI Karışık Geniş-Mumsu Yapraklı
II-VII Karışık İğne-Geniş-Mumsu Yapraklı

1Bir çok çalışmada orman ve ağaçlık formasyonunu birbirinden ayırmak için % 60 örtülülük sınır olarak kabul edilmesine rağmen Türkiye’deki mevcut orman arşivi (ör. 1/25.000’lik amenajman planları) %10-40, % 40-70, %40-100 sınıflarına göre düzenleniği için bu rakam % 40’a çekilmiştir.
Otsu Sınıflar:

III-I Forb: Buğdaygiller ailesi dışındaki türlerin baskın olduğu otsu bitki örtüsü tipi

III-II Buğdaygil: Buğdaygiller ailesinden türlerin baskı olduğu bitki örtüsü tipi

III-III Hydromorfik: Sucul ortamlara uyum sağlamış bitki türlerinden oluşan bitki örtüsü tipi

3. Fizyonomik Grup: İklim

Hiyerarşik sınıflandırma sisteminin üçüncü basamağıdır. Bu birime göre bitki örtüsü iklimsel özelliklere göre gruplara ayrılmaktadır.

İklim tipli:

- Akdeniz: Yaz sıcaklığının hakim olduğu, en yağışlı mevsimin kış olduğu iklim tipi
- Kıysal: Bütün sene boyunca yağışlı olan, deniz etkisi altında iklim tipi
- Karasal: Kışların soğuk, yazların ılık ve yağışlı olduğu deniz etkiden uzak iklim tipi

Sıcaklık, Yağış

4. Formasyon: Diğer Çevresel ve Yapısal Özellikler

Hiyerarşik sınıflandırma sisteminin dördüncü basamağıdır. Bu birimde bitki örtüsü çevresel ve diğer bazı yapısal özelliklere göre gruplara ayrılır; Yükseklik, Anakaya, Ağac boyu vb.

5. Alyans: Baskın Tür

6. Birlik: Yardımcı Tür

Bu sınıflandırma yaklaşımı ile ilgili daha detaylı bilgi Boşluk Analizi Kılavuzunda (Zeydanlı ve ark., 2005) bulunmaktadır.

Bitki örtüsü haritasının üretmesinde 1/25.000’lik meşcere haritaları ve CORINE 2006 verisi esas alınmıştır. Orman ve çalılık alanları meşcere haritası, yerleşim yerleri, tarım arazileri ve otsu bitki örtüsüne sahip alanlar da CORINE verisi esas alınarak haritalanmıştır. Meşcere haritasının ve CORINE verilerinin bitki örtüsüne dönüştürülmesi sürecinde temel bazı noktalar aşağıda özetlenmiştir.

Orman: Kapalılığı 40’%dan fazla olan alanlar (meşcere haritalarında 2 ve 3 kapalılık rumuzuna sahip meşcere tipleri) ayrılarak fizyonomik sınıf olarak orman tipine yerleştirildiler.

Seyrek Orman: Kapalılığı 10-40 % olan meşcereler (meşcere haritalarında 1 kapalılık rumuzuna sahip meşcere tipleri) seyrek orman fizyonomik sınıfına kondular. Ancak 1 kapalılığında gösterilen bazı meşcerelerin kapalılığının 10’%dan az olduğu ya da meşcere haritalarında kapalılığı olmayan ve B ya da ÇB ile gösterilen meşcere alanlarının 10’%dan kapalı olduğu durumlar rastlanmıştır. Bu yüzden bu meşcere tiplerinin önemli bir kısmı özellikle Google Earth kullanılarak gözden geçirilmiş ve ilgili sınıflara aktarılmıştır.

Otsu Bitki Örtüsü: Bu alanlar meşcere haritalarında tarım alanları ve yerleşimlerle karışık bir şekilde ifade edilebilmektedir. ‘OT’ rumuzlu alanlar otsu bitki örtüsü olarak ayrılabilmektedir ancak ‘Z’ ve ‘İs’ rumuzlu alanlar içerisinde alpin çayırlar ve bozkırlar da yer alabilmektedir. Bu alanların ayrılanması ve haritalanması için de CORINE verileri temel alınmıştır.

- ‘1...’ kodlu alanlar yerleşim ve yapay alanlar,
- ‘2...’ kodlu alanlar tarım alanları,
- 2.3.1 kodlu alanlar otsu bitki örtüsü,
- 2.4.2 kodlu alanlar tarım alanı,
- 2.4.3 kodlu alanlar detaylı uydu görüntülerinden kontrol edilerek tarım alanı veya otsu bitki örtüsü,
- 3.2.1 kodlu alanlar otsu bitki örtüsü,
- 3.2.4 kodlu alanlar meşcere paftaları veya uydu görüntülerini kullanarak farklı gruplara,
- 3.3.3 uydu görüntülerleri ve etrafındaki poligonlar değerlendirilerek seyrek bitki örtüsü veya otsu bitki örtüsü olarak ayrıldı.

Meşcere haritasının yorumlanması sonucu orman, seyrek orman ve çalılık grubuna ait 56 alyans tespit edilmiştir. Ancak bu alyanslar kapladıkları alana, diğer gruplarla ilişkisine göre tekrar değerlendirilerek 20 alyansa indirgenmiştir (bkz. Tablo 3.2).

Bu çalışmada 1/25.000 ölçekli meşcere paftalarının sayısal olarak kullanılabilmesi orman alanlarının çok detaylı ve doğru bir şekilde haritalanabilmesine olanak tanımıştır. Ancak orman örtüsünün zayıfladığı alanlarda bu haritaların güvenilirliği de azalmaktadır. Ayrıca orman dışındaki formasyonların haritalanması çalışmalarında bu paftalar yetersiz kalmaktadır.
Tablo 3.2: Sadeleştirilmiş ve gruplanmış alyanslar

<table>
<thead>
<tr>
<th>Alyanslar 2. Versiyon</th>
<th>Toplam Alan (ha)</th>
<th>En Büyük Poligonun Alanı (ha)</th>
<th>Poligon Sayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geniş Yapraklı Karışık Orman</td>
<td>3,436,822</td>
<td>31,165</td>
<td>78,752</td>
</tr>
<tr>
<td>Göknar Ormanı</td>
<td>379,521</td>
<td>1,135</td>
<td>9,495</td>
</tr>
<tr>
<td>Gürgen Ormanı</td>
<td>100,997</td>
<td>2,266</td>
<td>1,861</td>
</tr>
<tr>
<td>İğne Yapraklı Karışık Orman</td>
<td>21,778</td>
<td>2,166</td>
<td>572</td>
</tr>
<tr>
<td>İğne Yapraklı-Geniş Yapraklı Karışık Orman</td>
<td>258,036</td>
<td>677</td>
<td>5,831</td>
</tr>
<tr>
<td>Karaçam Ormanı</td>
<td>975,257</td>
<td>9,183</td>
<td>22,118</td>
</tr>
<tr>
<td>Kavak Ormanı</td>
<td>333,437</td>
<td>1,903</td>
<td>8,161</td>
</tr>
<tr>
<td>Kayın Ormanı</td>
<td>409</td>
<td>47</td>
<td>19</td>
</tr>
<tr>
<td>Kestane Ormanı</td>
<td>621,446</td>
<td>3,791</td>
<td>12,951</td>
</tr>
<tr>
<td>Kızılağaç Ormanı</td>
<td>47,316</td>
<td>582</td>
<td>1,241</td>
</tr>
<tr>
<td>Kızılçam Ormanı</td>
<td>65,989</td>
<td>1,172</td>
<td>1,772</td>
</tr>
<tr>
<td>İğne Yapraklı-Karışık Orman</td>
<td>156,255</td>
<td>3,922</td>
<td>2,564</td>
</tr>
<tr>
<td>Meşe Ormanı</td>
<td>89,620</td>
<td>1,852</td>
<td>2,043</td>
</tr>
<tr>
<td>Sarıçam Ormanı</td>
<td>116,626</td>
<td>814</td>
<td>3,270</td>
</tr>
<tr>
<td>Çalılık</td>
<td>1,181,909</td>
<td>16,694</td>
<td>16,612</td>
</tr>
<tr>
<td>Ardıc-Meşe Çalılığı</td>
<td>2,746,217</td>
<td>28,685</td>
<td>24,989</td>
</tr>
<tr>
<td>Karışık Çalılık</td>
<td>621,446</td>
<td>3,314</td>
<td>457</td>
</tr>
<tr>
<td>Meşe Çalılığı</td>
<td>527,401</td>
<td>7,097</td>
<td>8,829</td>
</tr>
<tr>
<td>Otsu Bitki Örtüsü</td>
<td>576,743</td>
<td>6,283</td>
<td>7,326</td>
</tr>
<tr>
<td>Otsu Bitki Örtüsü</td>
<td>1,552,373</td>
<td>36,225</td>
<td>14,507</td>
</tr>
<tr>
<td>Kumul</td>
<td>1,474,715</td>
<td>30,919</td>
<td>13,517</td>
</tr>
<tr>
<td>Sucul Ekosistemler</td>
<td>15,447</td>
<td>896</td>
<td>335</td>
</tr>
<tr>
<td>Tarım ve Yerleşim</td>
<td>62,211</td>
<td>4,410</td>
<td>655</td>
</tr>
<tr>
<td>Diğerleri</td>
<td>2,746,217</td>
<td>28,685</td>
<td>24,989</td>
</tr>
</tbody>
</table>

Bölgenin Bitki Örtüsü (Genel Bilgi)

Harita 3.12: Alyanslara göre bölgenin bitki örtüsü
C. Yaşambirlikleri

Resim 3.3: Giresun Harşit Vadisi
Karadeniz Bölgesi’nin yaşambirliklerinin hazırlanmasında bitki örtüsü en temel veri kümesi olmuştur. Bitki örtüsü haritası 20 temel alyans olarak gruplandırıldıktan sonra, yaşambirliklerinin oluşturulması için ekolojik bir perspektifle tekrar bir sınıflandırmaya tabi tutulmuştur. Bu sınıflandırma için dört temel değişken kullanılmıştır;

- Ekolojik bölgeler (2 adet): Ana iklim gruplarını ve topografiyayı yansıtmaktadır,
- Alt-Ekolojik bölgeler (7 adet): Lokal iklimsel farklılıkları, topografiyayı yansıtmaktadır,
- Yükseklik sınıfları (2 adet): İklimsel farklılıkların, toprak özelliklerinin dikey olarak değişimini yansıtmaktadır,
- Bitki örtüsü sınıfları (20 adet): Ekosistem düzeyinde farklılaşmayı yansıtmaktadır.

Tablo 3.3: En geniş alanı kaplayan 10 yaşambılıği.

<table>
<thead>
<tr>
<th>Kodu</th>
<th>Altekolojik Bölgesi</th>
<th>Yaşambılığının Adı</th>
<th>Alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.18</td>
<td>Doğu Karadeniz Nemli-İllıman Karışık Ormanları</td>
<td>Dağ Alpin Çayır</td>
<td>309,477</td>
</tr>
<tr>
<td>1.3.1.6</td>
<td>Batı Karadeniz Nemli-İllıman Karışık Ormanları</td>
<td>Kıyı İğne Yapraklı Geniş Yapraklı Karışık Ormanı</td>
<td>261,250</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Batı Karadeniz Nemli-İllıman Karışık Ormanları</td>
<td>Kıyı Geniş Yapraklı Karışık Ormanı</td>
<td>225,980</td>
</tr>
<tr>
<td>1.3.1.10</td>
<td>Batı Karadeniz Nemli-İllıman Karışık Ormanları</td>
<td>Kıyı Kayın Ormanı</td>
<td>211,650</td>
</tr>
<tr>
<td>2.3.1.7</td>
<td>Batı Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları</td>
<td>Alçak Karaçam Ormanı</td>
<td>178,683</td>
</tr>
<tr>
<td>2.3.2.5</td>
<td>Batı Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları</td>
<td>Dağ İğne Yapraklı Karışık Ormanı</td>
<td>155,796</td>
</tr>
<tr>
<td>2.1.2.18</td>
<td>Doğu Karadeniz Ardı Yarı Nemli-Soğuk Ormanları</td>
<td>Dağ Alpin Çayır</td>
<td>150,112</td>
</tr>
<tr>
<td>1.2.1.6</td>
<td>Orta Karadeniz Nemli-İllıman Karışık Ormanları</td>
<td>Kıyı İğne Yapraklı Geniş Yapraklı Karışık Ormanı</td>
<td>131,982</td>
</tr>
<tr>
<td>2.3.1.16</td>
<td>Batı Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları</td>
<td>Alçak Meşe Çalılıği</td>
<td>131,340</td>
</tr>
<tr>
<td>1.1.2.8</td>
<td>Doğu Karadeniz Nemli-İllıman Karışık Ormanları</td>
<td>Dağ Karışık Çalılık</td>
<td>129,782</td>
</tr>
</tbody>
</table>
Harita 3.13: Bölgenin en geniş alanı kaplayan 10 yaşam birliği
Harita 3.14: Yaşambililiği zenginliği

Tablo 3.4: Yaşambilikleri ve alanları

Doğu Karadeniz Nemli-İlman Karışık Ormanları

<table>
<thead>
<tr>
<th>YB Kodu</th>
<th>YB Adı</th>
<th>Toplam alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.2</td>
<td>Kıyı Geniş Yağalı Karışık Ormanı</td>
<td>74,197</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>Kıyı Gürge Ormanı</td>
<td>4,080</td>
</tr>
<tr>
<td>1.1.1.6</td>
<td>Kıyı İğne Yağalı Geniş Yağalı Karışık Ormanı</td>
<td>93,524</td>
</tr>
<tr>
<td>1.1.1.8</td>
<td>Kıyı Karışık Çalılık</td>
<td>78,489</td>
</tr>
<tr>
<td>1.1.1.10</td>
<td>Kıyı Kayın Ormanı</td>
<td>51,437</td>
</tr>
<tr>
<td>1.1.1.11</td>
<td>Kıyı Kestane Ormanı</td>
<td>28,558</td>
</tr>
<tr>
<td>1.1.1.12</td>
<td>Kıyı Kızılcağ Ormanı</td>
<td>49,596</td>
</tr>
<tr>
<td>1.1.1.14</td>
<td>Kıyı Kumul</td>
<td>905</td>
</tr>
<tr>
<td>1.1.1.15</td>
<td>Kıyı Ladin Ormanı</td>
<td>11,638</td>
</tr>
<tr>
<td>1.1.1.16</td>
<td>Kıyı Meşe Çalılıği</td>
<td>2,622</td>
</tr>
<tr>
<td>1.1.1.17</td>
<td>Kıyı Meşe Ormanı</td>
<td>2,799</td>
</tr>
<tr>
<td>1.1.1.19</td>
<td>Kıyı Sançam Ormanı</td>
<td>3,611</td>
</tr>
<tr>
<td>1.1.1.20</td>
<td>Kıyı Sucul Ekosistemi</td>
<td>5,990</td>
</tr>
<tr>
<td>1.1.2.2</td>
<td>Dağ Geniş Yağalı Karışık Ormanı</td>
<td>10,181</td>
</tr>
<tr>
<td>1.1.2.5</td>
<td>Dağ İğne Yağalı Karışık Ormanı</td>
<td>17,079</td>
</tr>
<tr>
<td>1.1.2.6</td>
<td>Dağ İğne Yağalı Geniş Yağalı Karışık Ormanı</td>
<td>114,941</td>
</tr>
<tr>
<td>1.1.2.8</td>
<td>Dağ Karışık Çalılık</td>
<td>129,782</td>
</tr>
<tr>
<td>1.1.2.10</td>
<td>Dağ Kayın Ormanı</td>
<td>38,593</td>
</tr>
<tr>
<td>1.1.2.11</td>
<td>Dağ Kestane Ormanı</td>
<td>1,030</td>
</tr>
<tr>
<td>1.1.2.12</td>
<td>Dağ Kızılcağ Ormanı</td>
<td>9,308</td>
</tr>
<tr>
<td>YB Kodu</td>
<td>YB Adı</td>
<td>Toplam alanı (ha)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>1.1.2.14</td>
<td>Dağ Kumul</td>
<td>249</td>
</tr>
<tr>
<td>1.1.2.15</td>
<td>Dağ Ladin Ormanı</td>
<td>73,258</td>
</tr>
<tr>
<td>1.1.2.16</td>
<td>Dağ Meşe Çalılığı</td>
<td>4,491</td>
</tr>
<tr>
<td>1.1.2.18</td>
<td>Dağ Alpin Çayı</td>
<td>309,477</td>
</tr>
<tr>
<td>1.1.2.19</td>
<td>Dağ Sarıçam Ormanı</td>
<td>16,417</td>
</tr>
</tbody>
</table>

Orta Karadeniz Nemli-Ilıman Karışık Ormanları

<table>
<thead>
<tr>
<th>YB Kodu</th>
<th>YB Adı</th>
<th>Toplam alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1.10</td>
<td>Kıyı Kayın Ormanı</td>
<td>117,212</td>
</tr>
<tr>
<td>1.2.1.11</td>
<td>Kıyı Kestane Ormanı</td>
<td>4,427</td>
</tr>
<tr>
<td>1.2.1.12</td>
<td>Kıyı Kızılğaç Ormanı</td>
<td>5,682</td>
</tr>
<tr>
<td>1.2.1.13</td>
<td>Kıyı Kızılıçam Ormanı</td>
<td>5,326</td>
</tr>
<tr>
<td>1.2.1.14</td>
<td>Kıyı Kumul</td>
<td>2,806</td>
</tr>
<tr>
<td>1.2.1.16</td>
<td>Kıyı Meşe Çalılığı</td>
<td>48,343</td>
</tr>
<tr>
<td>1.2.1.17</td>
<td>Kıyı Meşe Ormanı</td>
<td>16,425</td>
</tr>
<tr>
<td>1.2.1.19</td>
<td>Kıyı Sarıçam Ormanı</td>
<td>2,775</td>
</tr>
<tr>
<td>1.2.1.2</td>
<td>Kıyı Geniş Yapaklı Karışık Ormanı</td>
<td>38,586</td>
</tr>
<tr>
<td>1.2.1.3</td>
<td>Kıyı Sucul Ekosistemi</td>
<td>21,247</td>
</tr>
<tr>
<td>1.2.1.15</td>
<td>Kıyı İğne Yapaklı Karışık Ormanı</td>
<td>4,863</td>
</tr>
<tr>
<td>1.2.1.6</td>
<td>Kıyı İğne Yapaklı Geniş Yapaklı Karışık Ormanı</td>
<td>3,453</td>
</tr>
<tr>
<td>1.2.1.7</td>
<td>Kıyı Karaçam Ormanı</td>
<td>131,982</td>
</tr>
<tr>
<td>1.2.1.8</td>
<td>Kıyı Karışık Çalışık</td>
<td>4,054</td>
</tr>
<tr>
<td>1.2.2.10</td>
<td>Dağ Kayın Ormanı</td>
<td>53,390</td>
</tr>
<tr>
<td>1.2.2.19</td>
<td>Dağ Sarıçam Ormanı</td>
<td>43,642</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Dağ Geniş Yapaklı Karışık Ormanı</td>
<td>1,755</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Dağ Göknar Ormanı</td>
<td>1,961</td>
</tr>
<tr>
<td>1.2.2.5</td>
<td>Dağ İğne Yapaklı Karışık Ormanı</td>
<td>1,084</td>
</tr>
<tr>
<td>1.2.2.6</td>
<td>Dağ İğne Yapaklı Geniş Yapaklı Karışık Ormanı</td>
<td>1,414</td>
</tr>
<tr>
<td>1.2.2.8</td>
<td>Dağ Karışık Çalışık</td>
<td>11,083</td>
</tr>
</tbody>
</table>

Batı Karadeniz Nemli-Ilıman Karışık Ormanları

<table>
<thead>
<tr>
<th>YB Kodu</th>
<th>YB Adı</th>
<th>Toplam alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1.10</td>
<td>Kıyı Kayın Ormanı</td>
<td>211,650</td>
</tr>
<tr>
<td>1.3.1.11</td>
<td>Kıyı Kestane Ormanı</td>
<td>11,251</td>
</tr>
<tr>
<td>1.3.1.13</td>
<td>Kıyı Kızılıçam Ormanı</td>
<td>4,374</td>
</tr>
<tr>
<td>1.3.1.16</td>
<td>Kıyı Meşe Çalılığı</td>
<td>45,776</td>
</tr>
<tr>
<td>1.3.1.17</td>
<td>Kıyı Meşe Ormanı</td>
<td>67,741</td>
</tr>
<tr>
<td>1.3.1.18</td>
<td>Kıyı Bozkır</td>
<td>25,333</td>
</tr>
<tr>
<td>1.3.1.19</td>
<td>Kıyı Sarıçam Ormanı</td>
<td>4,240</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Kıyı Geniş Yapaklı Karışık Ormanı</td>
<td>225,980</td>
</tr>
<tr>
<td>YB Kodu</td>
<td>YB Adı</td>
<td>Toplam alanı (ha)</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>1.3.1.20</td>
<td>Kişit Suçul Ekosistemi</td>
<td>8,694</td>
</tr>
<tr>
<td>1.3.1.3</td>
<td>Kişit Göknar Ormanı</td>
<td>17,716</td>
</tr>
<tr>
<td>1.3.1.4</td>
<td>Kişit Gürgen Ormanı</td>
<td>12,981</td>
</tr>
<tr>
<td>1.3.1.5</td>
<td>Kişit İğne Yapraklı Karışık Ormanı</td>
<td>15,800</td>
</tr>
<tr>
<td>1.3.1.6</td>
<td>Kişit İğne Yapraklı Geniş Yapraklı Karışık Ormanı</td>
<td>261,250</td>
</tr>
<tr>
<td>1.3.1.7</td>
<td>Kişit Karaçam Ormanı</td>
<td>26,677</td>
</tr>
<tr>
<td>1.3.1.8</td>
<td>Kişit Karışık Çalılık</td>
<td>59,794</td>
</tr>
<tr>
<td>1.3.2.10</td>
<td>Dağ Kayın Ormanı</td>
<td>16,193</td>
</tr>
<tr>
<td>1.3.2.16</td>
<td>Dağ Meşe Çalılığı</td>
<td>1,408</td>
</tr>
<tr>
<td>1.3.2.17</td>
<td>Dağ Meşe Ormanı</td>
<td>1,246</td>
</tr>
<tr>
<td>1.3.2.19</td>
<td>Dağ Sarıçam Ormanı</td>
<td>4,311</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>Dağ Geniş Yapraklı Karışık Ormanı</td>
<td>3,592</td>
</tr>
<tr>
<td>1.3.2.3</td>
<td>Dağ Göknar Ormanı</td>
<td>16,419</td>
</tr>
<tr>
<td>1.3.2.5</td>
<td>Dağ İğne Yapraklı Karışık Ormanı</td>
<td>17,637</td>
</tr>
<tr>
<td>1.3.2.6</td>
<td>Dağ İğne Yapraklı Geniş Yapraklı Karışık Ormanı</td>
<td>96,728</td>
</tr>
<tr>
<td>1.3.2.7</td>
<td>Dağ Karaçam Ormanı</td>
<td>3,220</td>
</tr>
<tr>
<td>1.3.2.8</td>
<td>Dağ Karışık Çalılık</td>
<td>7,403</td>
</tr>
</tbody>
</table>

Orta ve Batı Karadeniz Yarı Nemli-Ilıman Çöküntü Ekosistemleri

<table>
<thead>
<tr>
<th>YB Kodu</th>
<th>YB Adı</th>
<th>Toplam alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1.1</td>
<td>Alçak Ardıç-Meşe Çalılığı</td>
<td>12,458</td>
</tr>
<tr>
<td>1.4.1.13</td>
<td>Alçak Kızılçam Ormanı</td>
<td>124,303</td>
</tr>
<tr>
<td>1.4.1.14</td>
<td>Alçak Kumul</td>
<td>4,588</td>
</tr>
<tr>
<td>1.4.1.16</td>
<td>Alçak Meşe Çalılığı</td>
<td>86,480</td>
</tr>
<tr>
<td>1.4.1.17</td>
<td>Alçak Meşe Ormanı</td>
<td>1,732</td>
</tr>
<tr>
<td>1.4.1.18</td>
<td>Alçak Dağ Bozkırı</td>
<td>49,582</td>
</tr>
<tr>
<td>1.4.1.20</td>
<td>Alçak Suçul Ekosistemi</td>
<td>13,580</td>
</tr>
<tr>
<td>1.4.1.16</td>
<td>Alçak İğne Yapraklı Karışık Ormanı</td>
<td>12,304</td>
</tr>
<tr>
<td>1.4.1.17</td>
<td>Alçak Karaçam Ormanı</td>
<td>3,474</td>
</tr>
<tr>
<td>1.4.1.18</td>
<td>Alçak Karışık Çalılık</td>
<td>10,736</td>
</tr>
</tbody>
</table>

Doğu Karadeniz Ardı Yarı Nemli-Soğuk Ormanları

<table>
<thead>
<tr>
<th>YB Kodu</th>
<th>YB Adı</th>
<th>Toplam alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1.1</td>
<td>Alçak Ardıç-Meşe Çalılığı</td>
<td>2,143</td>
</tr>
<tr>
<td>2.1.1.18</td>
<td>Alçak Dağ Bozkırı</td>
<td>1,484</td>
</tr>
<tr>
<td>2.1.2.1</td>
<td>Dağ Ardıç-Meşe Çalılığı</td>
<td>6,098</td>
</tr>
<tr>
<td>2.1.2.16</td>
<td>Dağ Meşe Çalılığı</td>
<td>9,554</td>
</tr>
<tr>
<td>2.1.2.18</td>
<td>Dağ Alpin Çayır</td>
<td>150,112</td>
</tr>
<tr>
<td>2.1.2.19</td>
<td>Dağ Sarıçam Ormanı</td>
<td>15,622</td>
</tr>
<tr>
<td>2.1.2.5</td>
<td>Dağ İğne Yapraklı Karışık Ormanı</td>
<td>1,850</td>
</tr>
<tr>
<td>2.1.2.6</td>
<td>Dağ İğne Yapraklı Geniş Yapraklı Karışık Ormanı</td>
<td>7,603</td>
</tr>
<tr>
<td>2.1.2.8</td>
<td>Dağ Karışık Çalılık</td>
<td>23,377</td>
</tr>
</tbody>
</table>
Orta Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları

<table>
<thead>
<tr>
<th>YB Kodu</th>
<th>YB Adı</th>
<th>Toplam alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1.1</td>
<td>Alçak Arḍıç-Meşе Çalışlığı</td>
<td>8,216</td>
</tr>
<tr>
<td>2.2.1.10</td>
<td>Alçak Kayın Ormanı</td>
<td>14,729</td>
</tr>
<tr>
<td>2.2.1.13</td>
<td>Alçak Kızılçam Ormanı</td>
<td>3,338</td>
</tr>
<tr>
<td>2.2.1.14</td>
<td>Alçak Kumul</td>
<td>524</td>
</tr>
<tr>
<td>2.2.1.16</td>
<td>Alçak Meşе Çalışlığı</td>
<td>94,139</td>
</tr>
<tr>
<td>2.2.1.17</td>
<td>Alçak Meşе Ormanı</td>
<td>2,861</td>
</tr>
<tr>
<td>2.2.1.18</td>
<td>Alçak Dağ Bozkır</td>
<td>43,558</td>
</tr>
<tr>
<td>2.2.1.19</td>
<td>Alçak Sarıçam Ormanı</td>
<td>2,254</td>
</tr>
<tr>
<td>2.2.1.12</td>
<td>Alçak Geniş Yapkrako Karişık Ormanı</td>
<td>2,581</td>
</tr>
<tr>
<td>2.2.1.10</td>
<td>Alçak Sucul Ekosistemi</td>
<td>9,931</td>
</tr>
<tr>
<td>2.2.1.6</td>
<td>Alçak İğnе Yapkrako Geniş Yapkrako Karişık Ormanı</td>
<td>15,776</td>
</tr>
<tr>
<td>2.2.1.7</td>
<td>Alçak Karaçam Ormanı</td>
<td>2,208</td>
</tr>
<tr>
<td>2.2.1.8</td>
<td>Alçak Karişık Çalışık</td>
<td>15,159</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Dağ Arḍıç-Meşе Çalışığı</td>
<td>1,633</td>
</tr>
<tr>
<td>2.2.2.10</td>
<td>Dağ Kayın Ormanı</td>
<td>57,985</td>
</tr>
<tr>
<td>2.2.2.16</td>
<td>Dağ Meşе Çalışığı</td>
<td>60,988</td>
</tr>
<tr>
<td>2.2.2.17</td>
<td>Dağ Meşе Ormanı</td>
<td>1,813</td>
</tr>
<tr>
<td>2.2.2.18</td>
<td>Dağ Alpın Çayır</td>
<td>115,370</td>
</tr>
<tr>
<td>2.2.2.19</td>
<td>Dağ Sarıçam Ormanı</td>
<td>49,616</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Dağ Geniş Yaprkako Karişık Ormanı</td>
<td>2,729</td>
</tr>
<tr>
<td>2.2.2.5</td>
<td>Dağ İğне Yaprkako Karişık Ormanı</td>
<td>6,413</td>
</tr>
<tr>
<td>2.2.2.6</td>
<td>Dağ İğне Yaprkako Geniş Yaprkako Karişık Ormanı</td>
<td>36,809</td>
</tr>
<tr>
<td>2.2.2.8</td>
<td>Dağ Karişık Çalışık</td>
<td>20,198</td>
</tr>
</tbody>
</table>

Batı Karadeniz Ardı Yarı Nemli-Soğuk Ormanları ve Çalılıkları

<table>
<thead>
<tr>
<th>YB Kodu</th>
<th>YB Adı</th>
<th>Toplam alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1.1</td>
<td>Alçak Arḍıç-Meşе Çalışığı</td>
<td>9,611</td>
</tr>
<tr>
<td>2.3.1.10</td>
<td>Alçak Kayın Ormanı</td>
<td>12,297</td>
</tr>
<tr>
<td>2.3.1.13</td>
<td>Alçak Kızılçam Ormanı</td>
<td>2,156</td>
</tr>
<tr>
<td>2.3.1.14</td>
<td>Alçak Kumul</td>
<td>178,683</td>
</tr>
<tr>
<td>2.3.1.16</td>
<td>Alçak Meşе Çalışığı</td>
<td>131,340</td>
</tr>
<tr>
<td>2.3.1.17</td>
<td>Alçak Meşе Ormanı</td>
<td>12,439</td>
</tr>
<tr>
<td>2.3.1.19</td>
<td>Alçak Sarıçam Ormanı</td>
<td>10,193</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Alçak Geniş Yaprkako Karişık Ormanı</td>
<td>4,441</td>
</tr>
<tr>
<td>2.3.1.20</td>
<td>Alçak Sucul Ekosistemi</td>
<td>1,169</td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>Alçak Göknar Ormanı</td>
<td>8,777</td>
</tr>
<tr>
<td>2.3.1.4</td>
<td>Alçak Gürgen Ormanı</td>
<td>2,120</td>
</tr>
<tr>
<td>2.3.1.5</td>
<td>Alçak İğне Yaprkako Karişık Ormanı</td>
<td>18,137</td>
</tr>
<tr>
<td>2.3.1.6</td>
<td>Alçak İğне Yaprkako Geniş Yaprkako Karişık Ormanı</td>
<td>76,965</td>
</tr>
<tr>
<td>2.3.1.7</td>
<td>Alçak Karaçam Ormanı</td>
<td>178,683</td>
</tr>
<tr>
<td>2.3.1.8</td>
<td>Alçak Karışık Çalılık</td>
<td>42,713</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Dağ Ardiç-Meşe Çalılığı</td>
<td>5,770</td>
</tr>
<tr>
<td>2.3.2.10</td>
<td>Dağ Kayın Ormanı</td>
<td>25,365</td>
</tr>
<tr>
<td>2.3.2.16</td>
<td>Dağ Meşe Çalılığı</td>
<td>28,729</td>
</tr>
<tr>
<td>2.3.2.17</td>
<td>Dağ Meşe Ormanı</td>
<td>2,993</td>
</tr>
<tr>
<td>2.3.2.18</td>
<td>Dağ Alpin Çayır</td>
<td>12,738</td>
</tr>
<tr>
<td>2.3.2.19</td>
<td>Dağ Sarıçam Ormanı</td>
<td>123,803</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Dağ Geniş Yapraklı Karışık Ormanı</td>
<td>2,579</td>
</tr>
<tr>
<td>2.3.2.3</td>
<td>Dağ Göknar Ormanı</td>
<td>40,914</td>
</tr>
<tr>
<td>2.3.2.5</td>
<td>Dağ İğne Yapraklı Karışık Ormanı</td>
<td>155,796</td>
</tr>
<tr>
<td>2.3.2.6</td>
<td>Dağ İğne Yapraklı Geniş Yapraklı Karışık Ormanı</td>
<td>55,653</td>
</tr>
<tr>
<td>2.3.2.7</td>
<td>Dağ Karaçam Ormanı</td>
<td>78,789</td>
</tr>
<tr>
<td>2.3.2.8</td>
<td>Dağ Karışık Çalılık</td>
<td>34,760</td>
</tr>
</tbody>
</table>
D. Kuşlar

Proje bölgesinde yaygın orman örtüsü ve yüksek dağların varlığı nedeniyle bölgede tipik orman ve alpin kuşak türleri görülür. Gerek ibreli, gerek yapraklı ormanlara özgü birçok türümüz Türkiye’de ağırlıklı olarak Karadeniz Bölgesi’nde görülürler (bkz. Resim 3.4. Sürmeli Çalıkuşu). Ayrıca Doğu Karadeniz’in yüksek dağ sralarına özgü, kısmen İlgaz Dağları (Çankırı/Kastamonu), Köroğlu Dağları (Bolu) ve Uludağ’da da (Bursa) rastlanan, daha çok İran-Turan ve İç Asya coğrafyasıyla ilişkili kuş türleri de bölgenin popüler türleri arasında yer almaktadır. Kuşlar arasında Türkiye’ye endemik olan yoktur. Ancak 7 tür bölgesel endemiktir: Urkeklik (Tetraogallus caspius), Dağhorozu (Tetrao mlokosiewiczi), Sürmeli Dağbülbülü (Prunella ocularis), Kafkas Çıvgını (Phylloscopus sindianus), Akyanaklı Baştankara (Parus lugubris), Küçük Sıvacı (Sitta krueperi), Maskeli Örümcekkuşu (Lanius nubicus). Bu türlerin tamamı ya Kafkaslar bölgesinde, ya da Balkan-Anadolu bölgesinde özgündürler ve dünya popülasyonlarının önemli bir kısmı ülkemizdedir.

Resim 3.4: Sürmeli Çalıkuşu (Regulus ignicapillus) ibreli ve karışık ormanlarda görülür (Foto: Mustafa Sözen)

Tablo 3.5: Proje bölgesinde yaşadığı bilinen tehdit altındaki kuş türleri ve küresel IUCN statüleri.

<table>
<thead>
<tr>
<th>Bilimsel adı</th>
<th>Türkçe adı</th>
<th>Küresel tehdit sınıfı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branta ruficollis</td>
<td>Sibirya Kazı</td>
<td>EN</td>
</tr>
<tr>
<td>Oxyura leucocephala</td>
<td>Dikkuyruk</td>
<td>EN</td>
</tr>
<tr>
<td>Neophron percnopterus</td>
<td>Küçük Akbaba</td>
<td>EN</td>
</tr>
<tr>
<td>Falco cherrug</td>
<td>Uludoğan</td>
<td>EN</td>
</tr>
<tr>
<td>Pelecanus crispus</td>
<td>Tepeli Pelikan</td>
<td>VU</td>
</tr>
<tr>
<td>Aquila heliaca</td>
<td>Şah Kartal</td>
<td>VU</td>
</tr>
<tr>
<td>Aquila clanga</td>
<td>Büyük Orman Kartal</td>
<td>VU</td>
</tr>
<tr>
<td>Otis tarda</td>
<td>Toy</td>
<td>VU</td>
</tr>
</tbody>
</table>

Belirlenen 214 tür için bugüne kadar alanda yapılan tüm kayıtlar; yayınlar, raporlar ve tezler gibi ilgili literatürden, Kuşbank veritabanından (www.kusbank.org) ve kişisel gözlem kayıtlardan yararlanarak derlenmiştir. Bu yolla derlenen 6797 kaydın her biri kontrol edilmiş, veri girişinden kaynaklanan hatalar düzelttilmiş, her türün üreme durumu gözden geçirilmiş, yanlış teşhis olasılığı varsa bu kayıtlar işaretlenmiş ve/veya özgün kayıtlara bakarak ya da gözlemcisiyle görüşerek duruma açıklık kazandırılmıştır.

Değerlendirilen türlerden güvenli bir şekilde yayılışları belirlenebilir veya sakıncalı olan 62 tanesinin yayılış haritaları üretilmemiştir. Bu türlerin yayılışlarının analize dahil edilmeme gerekçeleri aşağıda verilmiştir (türlerin tamamı birden fazla gerekçeyi sağlamaktadır):

1: Az sayıda kayıt: Bazı türler için onun altında, hatta bazen bir tek kayıt söz konusudur. Bu türler için doğru bir yayılış belirlemek olanaksızdır.

2: Fark edilmesi zor: Baykuşlar gibi gece kuşları veya gizli yaşam süren kuşların varlığı çoğu zaman bilinmemektedir.

3: Habitat ilişkisi çok genel/belirsiz: Bazı türlerin habitat ayrımcı yapmaması, bazalarının da habitat ilişkilerinin bilinmemesi nedeniyle model kurulamamıştır.

4: Hatalı/eski kayıt veya üremiyor: On yıldan daha eski kayıtlara dayalı, yanlış teşhis olduğu değerlendirilen veya üremediği kesin olan türler de analizden çıkarılmıştır.
5: Denizel veya başka biyom kökenli: Martılar, sumrular, deniz ördekleri gibi karasal ortama bağlı olmayan türler ile İran-Turan biyocoğrafyasına özgü türler kapsam dışı tutulmuştur.

Harita 3.15: Proje alanında kayıt verisi bulunan lokaliteler (kırmızı noktalar) proje bölgesinin 5 km tampon verilmiş alanında yükselti üzerinde sunulmuştur (beyaz çizgiler il sınırlarını göstermektedir).

Büyük ölçüde gözlem kayıtlarına dayanan kuş yayılış bilgisi, kaçırmaz olarak gözlemci etkinliğinin yoğunlaştığı araştırma alanları, ana yollar ve sık ziyaret edilen yerlerle kısıtlıdır. Bu durum sadece nokta kayıtları kullanılarak belirlenecek bir yayılışın eksik ve hatalı olmasına yol açar. Bu sorunu aşmak için, 152 tür için yayılış modellenmesi yapılmıştır. Yayılış modellenmesi için kayıt sayısına, coğrafi dağılımına ve türün ekolojik özelliklerine göre üç farklı yönteme başvurulmuştur. Özellikle sadece birkaç sulak alanda bulunan veya koloni halinde üreyen 18 tür (%12), nokta kayıtlarının bitki örtüsü ve topoğrafya verileri yardımcıyla uzman tarafından değerlendirilmesi ve yayılış sınırlarının belirlenmesi şeklinde modellenmiştir.

Türlerin 115 (%75) tanesi için MaxEnt yazılımı kullanılarak korelatif modeller oluşturulmuştur. Korelatif modeller bir türün kaydedildiği noktalar ile o türün fizyolojisi ve ekolojisiyle bağlantılı bir dizi çevresel değişkeni eşleştirerek, o tür için uygun çevresel koşulları tahmin etmeye çalışırlar. Bu yaklaşımın esası, gözlenen yayılışın bir türün çevresel isteklerini yansıttığı gerçeğidir. Topografia, iklim ve bitki örtüsü bilgilerini içeren 20-22 farklı çevresel katmandan uygun olanlar seçilerek her tür için bir olasılık yüzeyi katmanı oluşturulmuştur. Bu katman, nokta kayıtları ve diğer bilgiler kullanılarak uygun eşik değerinden kesilerek türün var olduğu tahmin edilen ham harita elde edilmiştir.
Kayıt lokalitelerinin sayısı, dağılımı ve türün habitat ilişkilerinin niteliği nedeniyle MaxEnt kullanılması uygun olmayan 19 tür (%13) için ise mekanistik yayılış modellemesini yapmıştır. Mekanistik modelleme, değerlendirilen tür ile biyotopu arasında bilinen ilişkilerden yola çıkarak, türün dağılımdında belirleyici olan her habitat unsuruuna belli bir parametre aralığı ve ağırlık verilerek gerçekleştirilir. Yürüttülen mekanistik modelleme çalışmasında, Karadeniz Bölgesi topografiyası, iklimi ve bitki örtüsü tipleri ve bölgedeki insan faaliyetleri ana başlıklar altında tanımlanmış 20-22 unsurdan her bir tür için uygun olanları kullanılmıştır. Her bir çevresel değişken için bulanık fonksiyonlar belirlenmiştir. Oluşturulan yüzeyler, literatür ve araştırmalarda türün kayıtları ile uzman görüşü doğrultusunda uygun değerlerden kesilerek ham haritalar elde edilmiştir.

Elde edilen ham haritalar esas olarak potansiyel yayılış haritalardır. Günümüzdeki mevcut durumu yansıtmak amacıyla, potansiyel yayılışın kesintiye uğradığı bölgeler saptanarak haritalar gerektiği şekilde düzeltilmiş ve böylece türlerin en güncel yayılışları ortaya konmuştur.

Harita 3.16: Kuş türü zenginliği
E. Büyük Memeliler

Bu gruba giren türler, fiziksel veya taksonomik açıdan iki farklı şekilde tanımlanabilir. Fiziksel açıdan belli bir ağırlığın, genellikle 10 kg’ın üzerindeki türler, taksonomik açıdan ise Carnivora (etçiller) ve Ungulata (toynaklılar) üyesi türler bu gruba girerler.

Tablo 3.6: Proje bölgesinde yaşadığı bilinen büyük memeli türleri ve bu türlerin küresel IUCN statüleri. Analize dahil edilen türlerin adları koyu renkle yazılmıştır.

<table>
<thead>
<tr>
<th>Bilimsel adı</th>
<th>Türkçe adı</th>
<th>Ort. Kg</th>
<th>Tehdit sınıfı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rupicapra rupicapra</td>
<td>Çengelboynuzlu Dağkeçisi</td>
<td>30-40</td>
<td>LC</td>
</tr>
<tr>
<td>Capra aegagrus</td>
<td>Yaban Keçisi</td>
<td>35-60</td>
<td>VU</td>
</tr>
<tr>
<td>Capreolus capreolus</td>
<td>Karaca</td>
<td>22-25</td>
<td>LC</td>
</tr>
<tr>
<td>Cervus elaphus</td>
<td>Kızıl Geyik</td>
<td>80-150</td>
<td>LC</td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>Yaban Domuzu</td>
<td>70-150</td>
<td>LC</td>
</tr>
<tr>
<td>Canis aureus</td>
<td>Çakal</td>
<td>10-12</td>
<td>LC</td>
</tr>
<tr>
<td>Canis lupus</td>
<td>Kurt</td>
<td>35-45</td>
<td>LC</td>
</tr>
<tr>
<td>Lynx lynx</td>
<td>Vaşak</td>
<td>18-20</td>
<td>LC</td>
</tr>
<tr>
<td>Meles meles</td>
<td>Porsuk</td>
<td>10-12</td>
<td>LC</td>
</tr>
<tr>
<td>Lutra lutra</td>
<td>Susamuru</td>
<td>8-12</td>
<td>NT</td>
</tr>
<tr>
<td>Ursus arctos</td>
<td>Ayı</td>
<td>80-150</td>
<td>LC</td>
</tr>
</tbody>
</table>

Resim 3.5: Vaşak (*Lynx lynx*) popülaşyonları genelde bölgede iyi durumdadır (Foto: ODTÜ BKL)

Hedef türlerle ilgili ek güncel yayılış bilgisi toplamak için arazide toplam 4 hafta süren yoğun bir çalışma yapılmıştır. Bu çalışma kapsamında proje kapsamına giren illerde uygun habitatlar ziyaret edilmiş, yerel deneyime sahip avcılar, çobanlar ve orman teşkilatı mensuplarıyla çok sayıda görüşme gerçekleştirilmiştir. Bu gözlem ve görüşmelerin sonucunda her hedef tür için olabildiğince ayrıntılı yayılış haritaları oluşturulmuştur. Zaman zaman varlıklar hakkında duyumlar alınan Pars (*Panthera pardus*) ve Sırtlan (*Hyaena*...
hyaena) türleri hakkında güvenilir veri bulunamamış ve bu türler analiz dışı tutulmuştur. Böylece toplam 8 tür değerlendirilmiştir.

Büyük memelilerin kolay tanımlanmalarına karşın, çoğunun gececil olması, bir kısmının tek başlarına veya av baskı nedeniyle gözden uzak bir yaşam sürmesi bölgedeki yayılışlarının eksiksiz belirlenmesine olanak vermemiştir. Habitat ilişkileri esas olarak yapılan mekanistik yayılış modellenmesi bu eksikliği gidermek için kullanılmıştır. Mekanistik modellemede, değerlendirilen tür ile biyotopu arasında bilinen ilişkilerden yola çıkarak, türün dağılımda belirleyici olan her habitat unsuru belirli bir parametre aralığı ve ağırlık verilerek gerçekleştirilir. Yürütülen mekanistik modelleme çalışmasında, Karadeniz Bölgesi topografyası, iklimi, bitki örtüsü tipleri ve bölgedeki insan faaliyetleri ana başlıklar altında tanımlanmış 16-18 unsurdan her bir tür için uygun olanlar kullanılmıştır. Elde edilen ham haritalar daha sonra literatür ve arazi çalışması sonucunda türün varlığı belirlenen alanlar ve uzman görüşü doğrultusunda sınırlanarak düzeltmiştir.

Elde edilen haritalar esas olarak potansiyel yayılış haritalarıdır. Günümüzdeki mevcut durumu yansıtmak amacıyla, potansiyel yayılışın kesintiye uğradığı bölgeler saptanarak haritalar gerektiği şekilde düzeltilmiş ve böylece türlerin en güncel yayılışları ortaya konmuştur.

Harita 3.17: Büyük memeli tür zenginliği
F. Küçük Memeliler

Resim 3.6: Doğu Karadeniz’de yayılış gösteren Kısakulaklı Kırfaresi (Microtus majori) (Foto: Deniz Öztür)
Tablo 3.7: Analize dahil edilen hedef küçük memeli türleri: Endemizm ve tehdit kategorileri

<table>
<thead>
<tr>
<th>Tür</th>
<th>Türkçe Adı</th>
<th>Endemizm</th>
<th>Küresel Tehdit Kategorisi</th>
<th>Ulusal Tehdit Kategorisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chionomys roberti</td>
<td>Uzunkuyruklu karfaresi</td>
<td>Bölgesel</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Glis glis</td>
<td>Yediuyur</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Microtus majori</td>
<td>Kısakulaklı karfaresi</td>
<td>Bölgesel</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Microtus majori</td>
<td>Kısakulaklı karfaresi</td>
<td>Bölgesel</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Myodes glareolus</td>
<td>Kızılsırtlı ormanfaresi</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Neomys anomalus</td>
<td>Sivriburunlu bakatlıkfaresi</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Sorex raddei</td>
<td>Raddei’nin sivriburunlu faresi</td>
<td>Bölgesel</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Talpa levantis</td>
<td>Karadeniz köstebegi</td>
<td>Bölgesel</td>
<td>LC</td>
<td>LC</td>
</tr>
</tbody>
</table>

Seçilen 7 türün yayılışları, bilinen kayıt lokalitelerini içine alacak şekilde ve iklim, bitki örtüsü ve topoğrafya nitelikleri dikkate alınarak uzmanlar tarafından belirlenmiştir.

Küçük memeliler, kısıtlı alanlarda yaşayabildikleri ve hızlı üreyebildikleri için, insan etkinliklerinden kaynaklanan tehditlerden (habitat parçalanması dışında) fazla etkilenmezler. Ancak özellikle Doğu Karadeniz dağlarında öngörülen iklim değişikliğinin ekosistemın üretkenliğini ve türlerin biyolojik döngülerini nasıl etkileyeceği belirsizdir.

Harita 3.18: Küçük memeli tür zenginliği
G. Sürüngen ve Çiffanyşarlar

Resim 3.7: Doğu Karadeniz’de yayılış gösteren Kafkas semenderi (Mertansiella caucasica) (Foto: Deniz Özüt)

Yöntem
Karadeniz bölgesinde yayılış gösteren 52 Herpetofuna tür, proje ekibi ve tür grupu uzmanlarının çalışmalarıyla, yerli ve yabancı basılı kaynaklardan ve internet sayfalarından

Tablo 3.8: Sistematik Koruma Planlaması çalışmasına dahil edilen hedef herpetofauna türleri ve bu türlerin endemiklik ve tehdit kategorileri

<table>
<thead>
<tr>
<th>Tür</th>
<th>Türkçe adı</th>
<th>Endemik</th>
<th>IUCN Küresel Tehdit Kategorisi</th>
<th>IUCN Ulusal Tehdit Kategorisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darevskia clarkorum</td>
<td>Klark Kertenkelesi</td>
<td>Bölgesel Endemik</td>
<td>EN</td>
<td>EN</td>
</tr>
<tr>
<td>Darevskia derjugini</td>
<td>Artvin Kertenkelesi</td>
<td>Bölgesel Endemik</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Darevskia pareula</td>
<td>Gürcü Kertenkelesi</td>
<td>Bölgesel Endemik</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Lacerta agilis</td>
<td>Kars Kertenkelesi</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Lissotriton vulgaris</td>
<td>Küçük Semender</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Mertensiella caucasica</td>
<td>Kafkas semenderi</td>
<td>Bölgesel Endemik</td>
<td>VU</td>
<td>VU</td>
</tr>
<tr>
<td>Parvilacerta parva</td>
<td>Çüce Kertenkele</td>
<td>Bölgesel Endemik</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Pelias (Vipera) barani</td>
<td>Baran Engereği</td>
<td>Endemik</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Pelias (Vipera) kaznakovi</td>
<td>Kafkas Engereği</td>
<td>Bölgesel Endemik</td>
<td>EN</td>
<td>EN</td>
</tr>
<tr>
<td>Pelodytes caucasicus</td>
<td>Kafkas Kurbağasi</td>
<td>Bölgesel Endemik</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Podarcis muralis</td>
<td>Duvar Kertenkelesi</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Rana dalmatina</td>
<td>Çevik Kurbağa</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Zamenis hohenackeri</td>
<td>Kafkas Yılanı</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
<tr>
<td>Zamenis longissimus</td>
<td>Eskülüp Yılanı</td>
<td>-</td>
<td>LC</td>
<td>LC</td>
</tr>
</tbody>
</table>
Karadeniz Bölgesi’nde yayılış gösteren herpetofauna türlerinden 11 sürüngen türü ve dört çifthyaşar türü hedef türler olarak belirlenmiş ve çalışmaya dahil edilmiştir. Sürüngenlerden beş yılan türü (Vipera ve Zamenis cinslerinden) ve alt kertenkele türü (Darevskia, Lacerta, Podarcis ve Parvilacerta cinslerinden) yer alırken, çifthyaşarlardan iki semender (Mertensiella ve Lissotriton cinslerinden) ve iki kurbağa türü (Pelodytes ve Rana cinslerinden) çalışmada yer almıştır (bkz. Tablo 1). Bu temsilçi türleri esas olan tür zenginliği ve nadirlik haritalarını oluşturulmuştur.

Harita 3.19: Sürüngen ve çifthyaşarlar tür zenginliği

Tehditler

Çifthyaşar türleri de benzer nedenlerden kaynaklanan özellikle sucul habitatların bozulması ve kaybindan olumsuz etkilenmektedirler. Kurbağa ve semenderler deri solunumu yapmalarından ötürü, su kaynaklarının kirlenmesine (tarım ilaçları, suni gübreler, evsel ve sanayi atıklarından kaynaklanan) karşı özellikle hassas türler ve kirliliğin arttığı alanlarda tutunamamaktadırlar. Bu türler için önemli yaşam ortamı sağlayıcı ormanların yoğun işletmeeye konu olması da diğer bir önemli tehdittir.
H. Kelebekler

Kelebekler, omurgasız hayvanlar içerisinde en iyi bilinen ve çalışması nispeten kolay olan gruplardandır. Kolay gözelebilmeleri, tanımlanabilmeleri ve ilgi çekici olmalardan dolayı gerek akademik gerekse de amatörler tarafından yapılan gözlem ve çalışmalar sonucunda, kelebekler hakkında oldukça fazla yazılı ve görsel materyal bulunmaktadır. Bunların yanı sıra, kelebekler hızlı yaşam döngüleri nedeniyle çevresel değişimlerin etkisinin en çabuk gözelebildiği gruplardandır. Özelliklemiş habitat gereksinimleri (ör: konakçı bitkiler) nedeniyle de biyolojik çeşitliliğin diğer unsurları ile doğrudan bir ilişki içerisinde olup, yaşadıkları habitatın durumunu gösteren bir gösterge tür grubu olarak da öne çıkmaktadırlar.

Resim 3.8: Doğu Karadeniz’de dar yayılışlı ve yüksek tehdit altında olan bir tür, Kağkasya azameti (Colias caucasica) (Foto: Ahmet Baytaş)

Türkiye, üç farklı fitocoğrafik bölgede bulunması, deniz seviyesinden iki bin metre ve üzerine uzanan pek çok farklı yükseklikte dağıları, ovaları, vadileri ile geniş bir topografik çeşitliliğe sahip olması ve coğrafi konumundan ötürü de buzul çağlarından bir sağınak özelliği göstermesinden ötürü, diğer tür gruplarına olduğu gibi, kelebekler için de zengin bir yaşam ortamı sunmuş ve sunmaktadır. Türkiye, barındırdığı toplam 381 kelebek türü ile Avrupa’nın kelebekler açısından en zengin ülkesi gibi, bu türlerin 45’i ülkemize endemiktir.

Resim3.9: Bölgesel endemik bir tür, Mecnun güzelesmeri (Erebia melancholica). (Foto: Szabolcs Safian)

Harita 3.20: Kelebek türleri zenginliği

I. Endemik Bitkiler

Resim 3.10: Doğu Karadeniz’de yayılış gösteren endemik bir çalı türü, Rhodothamnus sessilifolius (Foto: Özgür Eminağaoğlu)
Yapılan literatür taraması sonucunda, tüm Karadeniz’de yaşayan ve sağlıklı yayılış verisine ulaşılan 274 nadir bitki türü listelenmiştir. Bunların büyük bir bölümü Doğu Karadeniz’de yayılış göstermektedir. Çalışma sonucunda 133 bitki türü hedef tür olarak seçilmiş ve Sistematik Koruma Planlaması analizlerine dahil edilmiştir.

Resim 3.11: Doğu Karadeniz’de yayılış gösteren endemik bir tür, Kafkas üvezi (Sorbus caucasica) (Foto: Özgür Eminağaoğlu)

Harita 3.21: Endemik bitki tür zenginliği
K. İklim Değişikliği

İklim Değişikliği Nedir ve Türkiye’de Beklenen Etkileri Nelerdir:

Birleşmiş Milletler İklim Değişikliği Çerçevesi Sözleşmesi’nde İklim Değişikliği, “karşılaştırılabilir zaman dilimlerinde gözlenen doğal iklim değişikliğine ek olarak doğrudan veya dolaylı olarak küresel atmosferin bileşimini bozan insan faaliyetleri sonucunda iklimde oluşan değişiklikler” olarak tanımlanmaktadır.

Küresel iklim değişikliğinin önümüzdeki süreçte ne hızla gerçekleşeceğine ilişkin projeksiyonlar da mevcuttur. Bu projeksiyonlar, sera gazı salınımına, ekonomik gelişmelere, çevresel çözümler üretilmesine ve bunların uygulanma oranı ile bu faktörlerin ölçüğe ilişkin öngörülerle dayanmaktadır. Hızlı ekonomik büyümeye, yeni ve etkin teknolojik gelişmeler olması, hızlı nüfus artımının 2050 yılına kadar devam etmesi ve global bir dünya olarak tanımlanmış en kötü senaryonun gerçekleşmesi durumunda, iklim değişikliğinin hızlanması beklenmektedir. Öte yandan, iyimser senaryolar olarak adlandırılan ve çevreci bir dünya, devamlı ama yavaş artan dünya nüfusu, ekonomi ve çevrede bölgesel çözümlere odaklı yavaş gelişen teknoloji biçiminde tanımlanmış durumlarda, iklim değişikliği hızının azalacağı öngörülmektedir.

Resim 3.12: Sera gazı (karbon) salınmaları ve küresel sıcaklıkların uzun yıllar ortalamalarından sapması (Bilgin ve Türkeş, 2008)
İklim değişikliğinin canlılar üzerinde etkileri (a) popülasyon büyüklüklerinde değişim, (b) uygun yaşam ortamlarının parçalanması, (c) kısı uyku, göç, üreme gibi kritik yaşam döngüsü olaylarının zamanlamasında değişim, (d) bulaşıcı hastalıktan ve zararların yayılışını sağlayan etkilerin sonucu olarak sıralanabilir. Bu değişimlerin sonucunda oluşacak etkileşimler, popülasyon dinamiklerini ve türlerin yayılışlarını değiştirebilir. Etkilenen türler (1) genişleme, daralma ya da kayma şeklinde yayılışlarını değişen iklimye uyumlayabilirler; (2) fizyolojik, davranışsal veya genetik olarak değişerek değişleri yerde uyum sağlayabilirler; ya da (3) koşullar artık elverişli olmadığında yok olabilirler. Bu sonuncu durum, özellikle dar yayılımlı, ortam sıcaklığına duyarlı veya hareket yeteneğine kıstılı türler için geçerlidir.

Hızla değişen iklimsel koşullar (özellikle kuraklaşma) birçok dar veya marjinal yayılımlı türü tehdit edecik, yaşam birliklerinin kompozisyonu ve yapısını değiştirebilecek, ekosistemlerin işleyişlerini bozacak nitelikte görülmektedir. Biyoçeşitlilik üzerindeki etkileri kesin olarak öngörmek zor olsa da, değişimin hızının uyum oranlarını kısıtladığı açık.
Bu çalışmada dört farklı iklim yüzeyi değerlendirmeye alınmıştır.

- Yıllık ortalama sıcaklık,
- Yıllık ortalama yağış,
- En yüksek ve en düşük ortalama sıcaklık değerleri farkı,
- Yıllık ortalama yağışın mevsimsel farklılığı

Her dört veri katmanı için 2050 yılına ait projeksiyonlar günümüze ait verilerden çıkartılarak aralarındaki fark bulunmaktadır.

Tablo 3.9: Türkiye ve Karadeniz için minimum ve maksimum değişim değerleri

<table>
<thead>
<tr>
<th></th>
<th>Sıcaklık</th>
<th>Yağış</th>
<th>Karasallık</th>
<th>Yağış</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Türkiye</td>
<td>1.9 °C</td>
<td>3.4 °C</td>
<td>1.9 °C</td>
<td>3.4 °C</td>
</tr>
<tr>
<td></td>
<td>% -2</td>
<td>% 17</td>
<td>% -6</td>
<td>% 100</td>
</tr>
<tr>
<td>Karadeniz</td>
<td>2.2 °C</td>
<td>2.8 °C</td>
<td>2.2 °C</td>
<td>2.8 °C</td>
</tr>
<tr>
<td></td>
<td>% -2</td>
<td>% 8</td>
<td>% 0</td>
<td>% 93</td>
</tr>
</tbody>
</table>

Daha sonraki aşama da bu farkın minimum ve maksimum değerleri göz önünde bulundurularak etkilenme düzeyini gösteren bir sınıflandırma yapılmıştır. Her dört veri katmanı için elde edilen veriler toplanarak, her bir hücre (1 km x 1 km) için bir değer elde edilmiştir. Bu toplam değer o hücrenin iklim değişikliği üzerinden etkilenme derecesini göstermektedir (bkz Harita 3.22-3.25). Daha sonra bu değerler analizde kullanılabilecek planlama birimleri olan 10 km x 10 km’lik karelere aktarılmıştır (bkz Harita 3.26).
Tablo 3.10: Türkiye ve Karadeniz için minimum ve maksimum değişim değerlerinin aralıklara bölünerek gruplara ayrılması

Özellik	Az	Çok		Az	Çok	
----------	----------	----------		----------	----------	
Sıcaklık	1.8–2.4 C0	2.4–3.4 C0		-1	-2	
Yağış	5 – (-5)	(-5) – (-10)		0	-1	
	(-10) - (-15)			-2		
Karasallık	< (-5)	5-10		1	>10	2
Akdenizlilik	(-6)–25 %	25-50 %		0	1	
	50-75 %	75-100 %		2		3
Harita 3.22: Yıllık ortalama sıcaklık değerleri
Harita 3.23: En yüksek ve en düşük ortalama sıcaklık değerleri farkı (karasallık)
Harita 3.24: Yıllık ortalama yağış
Harita 3.25: Ortalama yağışın mevsimsel farklığı
Harita 3.26: İklim değişikliğinden etkilenen alanlar
Sosyo-Ekonomik Veriler

Sistematik koruma planlamasında öncelikli alanların belirlenmesi sürecinde biyolojik çeşitlilik ile insan faaliyetlerinin etkileşimi de planlama sürecine entegre edilmektedir. Bu kapsamda Karadeniz Bölgesi’nde insan faaliyetlerinin biyolojik çeşitlilikle olumlu ya da olumsuz etkileşimlerini tanımlamak için 3 farklı konu ele alınmıştır:

- Tehdit analizi,
- Maliyet analizi
- Koruma fırsatları analizi.

Raporun bu bölümünde, bu başlıklar altında yapılan değerlendirmeler ve bu değerlendirmelerin sonuçları detaylandırılacaktır.

Resim 4.1: Altündere Vadisinde küçükbaş hayvancılık
A. Tehdit Analizi:

Resim 4.2: Tehdit Analizi Çalıştayı
Tablo 4.1. Karadeniz Bölgesi’nde biyolojik çeşitliliği tehdit eden insan faaliyetleri

<table>
<thead>
<tr>
<th>Engellenebilir Tehditler</th>
<th>Engellenemez Tehditler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaçak avcılık ve doğadan aşırı bitki toplama</td>
<td>Aşırı bitki toplama</td>
</tr>
<tr>
<td>Usulsuz ve kaçak avcılık</td>
<td>Yoğun tarım faaliyetleri</td>
</tr>
<tr>
<td>Kirilik*</td>
<td>Yoğun tarım faaliyetleri</td>
</tr>
<tr>
<td>Endüstriyel atıklar ve kirlilik</td>
<td>Yapılama</td>
</tr>
<tr>
<td>Moloz dökümü, kentsel ve evsel atıklar</td>
<td>Doğal alanların tarım alanlarına dönüştürme</td>
</tr>
<tr>
<td>Fabrika atıkları</td>
<td>Dolgu</td>
</tr>
<tr>
<td>Kañes balıkçılığı kaynaklı kirlilik</td>
<td>Kıyı erozyonu</td>
</tr>
<tr>
<td>Nükleer santral ve termik santral</td>
<td>Yol yapımı sonucunda tahribat</td>
</tr>
<tr>
<td>Tarımsal ve hayvansal kirlilik</td>
<td>Üygunsuz fidan üretim</td>
</tr>
<tr>
<td>Toz emisyonu</td>
<td>Madencilik</td>
</tr>
<tr>
<td>Hidroelektrik santraller ve iletişim hatları</td>
<td>Déğişik cevherler için tesis-ocak-işletme, açık-kapalı madenler</td>
</tr>
<tr>
<td>Yabancı türler</td>
<td>Aşırı otlama</td>
</tr>
<tr>
<td>Göle balık bırakma</td>
<td>Düzensiz otlama</td>
</tr>
<tr>
<td>Baş지요 köpekler</td>
<td>Mera ıslah projesi</td>
</tr>
<tr>
<td>Orman yangını</td>
<td>Rafting ve turistik tesisler</td>
</tr>
<tr>
<td>Sazlık yakma</td>
<td>Helisky</td>
</tr>
<tr>
<td>Yangın</td>
<td>Plansız turizm</td>
</tr>
<tr>
<td>Plansız turizm</td>
<td>Yayla turizmi, kayak turizmi, dağ yürüyüş</td>
</tr>
</tbody>
</table>

Belirli kirlilik tipleri koruma önlemleri doğrultusunda engellenebilir olarak tanımlanmış, diğerleri engellenemez tehditler olarak kabul edilmiştir.

Resim 4.3: Tehdit analizinde kullanılan ilişki fonksiyonları. Bu fonksiyonlar, tehdit kaynağından belirli mesafelerde (m1, m2) tehditin etkisinin nasıl azaldığını tanımlamaktadır; a) S azalan, b) J azalan, c) doğrusal azalan
Korunan Alanlarda Korumanın Etkililiği

Korunan alanlar, insan faaliyetlerinin biyolojik çeşitlilik üzerinde oluşturduğu baskıların ideal koşullarda diğer alanlara kıyasla daha az olduğu alanlardır. Ancak belirli özel durumlarda, bir alanın korunan alan ilan edilmesi doğal kaynak kullanıma kısıtlamalar getirdiği için tepki yaratılabilecek ve bu da alan üzerindeki insan baskıını artmasına neden olabildiktedir. Bölgedeki korunan alanlardaki durum, tehdit çalıştayları sırasında toplanan verilerle belirlenmiştir. Anketler aracılığıyla, bölgedeki her bir korunan alanda biyolojik çeşitliliğe yönelik tehditlerin ne kadar engellenip engellenmemiş, koruma alanın korumanın etkililiği belirlenmiştir. Koruma acilsiyeti ve koruma zorluğu

Koruma Acilsiyeti ve Koruma Zorluğu

Harita 4.1: Karadeniz Bölgesi’nde korumanın acilsiyeti
Koruma zorluğu katmanı, önlenmesi veya ortadan kaldırılması mümkün olmayan ve/veya bu yöndeki değişikliklerin yerel halkın geçim kaynakları açısından tercih edilmediği durumlar için, baskı ve tehditlerin derecesini gösterir. Aşırı otlatma, plansız turizm faaliyetleri, anız yakma, tarım alanına dönüştürme ve diğer doğal alan kayıpları ve kirlilik, engellenemez tehditler başlığı altında uzmanlarca tanımlanmıştır. Bu tehditlerin ve maden çıkarma çalışmalarından kaynaklanan tehditlerin mekânsal etkilerini tanımlayan ilişki fonksiyonları, yollarla yakınlık, yerleşim yerlerine yakınlık ve her bir koruma alanındaki korumanın etkiliği gibi değişkenler kullanılarak modellenen engellenemeyez insan etkinliğine açıklık ve nüfus yoğunluğu ile birlikte analiz edilerek koruma zorluğu belirlenmiştir.

Koruma maliyeti doğu, orta ve batı Karadeniz’de belirli bölgelerde, özellikle de kıyı şeridinde fazla çıkmıştır. Bunu etkileyen faktörler arasında nüfus, doğal alanların dönüştürülmesi, hidroelektrik santraller, kirlilik ve yoğun tarım uygulamaları öne çıkmaktadır.

Harita 4.2: Karadeniz Bölgesi’nde korumanın zorluğu
B. Maliyet Analizi:
Maliyet analizi, bölgedeki mevcut tehditlerin azaltılması için alınacak önlemlerin korumanın maliyetini nasıl etkileyeceğinin irdelendiği bir analizdir. Koruma acilşettiği, koruma zorluğu ve fırsat yüzeyleri bir arada kullanılarak maliyet yüzeyi oluşturulur. Bu şekilde hangi alanlarda koruma maliyetinin yüksek olduğu belirlenmektedir.

Koruma acilşettiği, koruma zorluğu ve fırsat unsurları içeren, alan bazındaki maliyet yüzeyi (çalışma birimi maliyeti) alanların önceliklendirme sürecine dahil edilir. Koruma önlemleriyle etkisi azaltılabilecek tehditler (koruma acilşettiği) ve koruma fırsatları, analizde maliyet düşüren unsurlardır. Koruma önlemleriyle etkisi azaltlamayacak olan koruma zorluğuya maliyeti artıran unsurdur. Önceliklendirme analizi, koruma hedeflerine ulaşmaya çalışırken en düşük maliyetli alanlara öncelik verir.

Ormancılık Faaliyetlerinin Yoğunluğu Analizi

Resim 4.4: Ekosistem Tabanlı Fonksiyonel Orman Planlaması çalışmasından bir örnek

C. Karadeniz Bölgesi'nde Koruma Fırsatları

Koruma Fırsatları Katmanı, Karadeniz Bölgesi'ndeki uygulayıcıların ve yöre halkının proje çıkartmalarını benimsemesini ve koruma faaliyetlerine katılması sağlamak için kolaylaştırıcı faaliyetlere ilişkin bölgenin potansiyelini ortaya çıkarmak amacıyla hazırlanmıştır. Bu konuda gerçekleştirilen değerlendirme, bölgede korunması gereken alanların seçimi sürecine dahil edilmiştir.

Resim 4.5: Koruma Fırsatları Katmanı

Sürdürülebilir Turizm Fırsatları

Karadeniz Bölgesi'nde sürdürülebilir turizm fırsatları 3 ana başlık altında örenlenmiştir. Sürdürülebilir turizm potansiyelini belirlemek için bölgenin doğal, örgütsel ve altyapısal kapasitesini yansitan sentezler ve veriler bir arada değerlendirilmiştir. Bu kapsamda, söz konusu sentez veriler için hazırlanan katmanlar ağırlık katsayları ile çarpılarak birleştirilmiş ve Sürdürülebilir Turizm Potansiyeli Katmanı hazırlanmıştır.
1. **Doğal Kapasite:** Karadeniz Bölgesi’ndeki sürdürülebilir turizm potansiyeli olan alanların ortaya çıkartılması için öncelikle bölgenin doğal özelliklerini yansıtan alanlar belirlenmiştir. Bu kapsamda göz önüne bulundurulan kriterler aşağıdaki gibidir:

1.1. **Yabanıllık:** Bölgenin yabanıllığını yansıtan yani bölgede doğal özelliğini koruyan, insan faaliyetleri ve etkisinden uzak yerler belirlenmiştir. Değerlendirmede yerleşim yoğunluğu, tarımsal alan kullanım yoğunluğu ve yolların yoğunluğu göz önünde alınmıştır. Yerleşim ve tarımsal alan kullanım yoğunluğunu belirlemede, çalışma birimi olan 10X10 km’lik karelerdeki toplam yerleşim ve tarımsal alan büyüklüklerinin yüzey alana oranı kullanılmıştır. Yol yoğunluğunu değerlendirmek için her bir karedeki yol tipi için belirlenen kalite puanı (otoyol ve bölünmüş yollar için 10, devlet ve il yolları için 8, asfalt yollar için 6, stabilize yollar için 4, kaplama yollar için 2, ham yollar için 0) ile yolların uzunlukları çarpılarak toplam değerler elde edilmiştir. Bu 3 değişken bir arada kullanılarak bölgenin yabanıllığı belirlenmiştir.

1.2. **Endüstrinin Azlığı:** Bu kapsama, bölgedeki endüstri ve maden alanları değerlendirilmiştir. Endüstri alanları turizm potansiyelini olumsuz yönde etkileyebilecek alanlar olduğu için, bölgede turizm potansiyeli olan alanları belirlemek amacıyla endüstri ve madenciliğin yoğunluğunun düşük olduğu alanlar çıkartılmıştır. Endüstri yoğunluğunu belirlemede il-ilçe bazında sanayi ve madencilik sektöründe çalışan nüfus verisi ile sanayi ve maden alanları kullanılmıştır. Bu değişkenlerin bir araya getirilmesi ile endüstri yoğunluğunun az olduğu alanlar tespit edilmiştir.

Resim 4.6: Karadeniz Bölgesinin önemli turizm noktalarından Sümela Manastırı
1.3. Orman Alanları ve Sulakalanların Varlığı: Bölgede ekoturizm açısından çekiciği olan orman alanları ve sulakalanların yoğun olduğu alanlar belirlenmiştir. Bu bağlamda, orman alanları ve sulak alanların yoğunluğu 10X10 km’lik çalışma karelerindeki toplam orman ve sulakalan büyüklüklerinin yüzey alana oranı kullanılmıştır. yoğunluğu yüksek alanlar sürdürülebilir turizm bakımından cazip yerler olarak belirlenmiştir.

1.4. Peyzaj Güzelliği: Bölgede peyzaj güzelliği açısından etkileyici, fotoğrafi değeri yüksek, farklı jeomorfolojik oluşumları bireysinde barındıran ve bitki örtüsü zenginliği fazla olan alanlar tespit edilmiştir. Değerlendirmede 10X10 km’lik her bir çalışma birimindeki yükseklik farklılıkları, eğim farklılıkları ve bitki örtüsü çeşitliliği kullanılmıştır. Peyzaj güzelliğini belirlediğinde, 10X10 km’lik karelerdeki Sayısal Alan Modelinden elde edilmiş yükseklik farklılıkları, eğim farklıları ve bitki örtüsü çeşitliliği sayısunun kullanılmıştır. Yükseklik farklı, eğim farklı ve bitki örtüsü çeşitliliği fazla olan alanlar peyzaj değeri yüksek alanlar olarak belirlenmiştir.

2. Örgütsel Kapasite: Karadeniz Bölgesi’nde önerilecek sürdürülebilir turizm aktiviteleri için gerekli olan destekleyici örgütsel yapıları ve bölgede yaşayan insanların bu tür aktiviteleri kabul edebilirğini göstermektedir. Örgütsel kapasitenin belirlenmesi için aşağıdaki kriterler değerlendirilmiştir:

2.1. Eğitim Durumu: Bölgede yaşayan insanların sürdürülebilir turizme yaklaşımlarını ve bu tür faaliyetleri destekleme potansiyellerini yansıtması açısından eğitim durumları değerlendirilmiştir. Bu kapsamda TÜİK’ten elde edilen 2010 yılı Adrese Dayalı Nüfus Kayıt Sistemi verilerine göre tespit edilen eğitim durumları oranları kullanılmıştır. Eğitim seviyelerine göre katsayılar (üniversite mezunları için 5, lise mezunları için 4,
ilköğretim mezunları için 3, ilkokul mezunları için 2 ve okuma yazma bilen fakat okul bitirmemenin için 1) belirlenmiş ve bölgedeki her bir ilçe merkezi bazında oranlar katsayılarla çarpılarak toplamlar elde edilmiştir. Toplam değeri yüksek olan ilçeler, sürdürülebilir turizme daha yakın yerleşimler olarak değerlendirilmiştir.

2.2. STK, Spor Kulüpleri, Turizm Meslek Okulları ve Üniversitelerde Turizm Bölümlerinin Varlığı:
Karadeniz Bölgesi'nde sürdürülebilir turizm faaliyetlerini kolaylaştırması ve desteklemesi açısından sivil toplum kuruluşları, spor kulüpleri, turizm meslek okulları ve turizm meslek yüksekokulları gibi kurum ve eğitim birimlerinin varlığı ve yoğunluğu göz önünde alınmıştır. Çalışma alanında bulunan ilerdeki söz konusu kurumlar tespit edilmiş ve ilerdeki yoğunluklarla göre değerlendirime yapılmıştır. Söz konusu kurumların yoğunluğunun fazla olduğu iller, sürdürülebilir turizm altyapısı açısından avantajlı bölgeler olarak belirlenmiştir.

3. Altyapı Kapasitesi: Karadeniz Bölgesi'nde sürdürülebilir turizm aktivitelerinin gerçekleştirilmesi için gerekli altyapının varlığını ve yeterliliğini göstermektedir. Bölgenin altyapı kapasitesini ortaya çıkarmak amacıyla aşağıdaki kriterler dikkate alınmıştır:

3.1. Turizm Merkezleri ve Korunan Alanlar: Bölgedeki sürdürülebilir turizm potansiyelini ortaya koyması açısından T.C. Kültür ve Turizm Bakanlığı tarafından belirlenen Turizm Merkezleri, Kültür ve Turizm Koruma ve Gelişim Bölügeleri ve korunan alanlardaki değişen derecelerdeki turizm altyapısı değerlendirilmiştir. Söz konusu alanlar, 10X10 km'lik çalışma birimi olan karelere aktarılmış, her bir kullanım

3.3. Tur Güzergahlarına Yakınlık: Bölgede halihazırda gerçekleştirilen turizm faaliyetleri yoğunluğunu belirlemek açısından tur güzergahlarının geçtiği noktalarda belirli bir turizm altyapısı bulunduğu öngörülerek bu alanlara yakınlık durumları değerlendirilmiştir. Yatak kapasiteleri, il ve ilçe merkezlerinin bulunduğu 10X10 km'lik çalışma birimlerindeki toplam değerler elde edilmiştir. Bu sınıflara göre değerler atanarak 10X10 km'lik çalışma birimlerindeki toplam değerler elde edilmiştir. Yüksek değerli alanlar sürdürülebilir turizm altyapısı açısından avantajlı bölgeler olarak belirlenmiştir.

3.4. Havaalanlarından Ulaşım: Karadeniz Bölgesi'ndeki hızlı ve kolay ulaşılabilir alanlar belirlenmiştir. Bu kapsamda, bölgedeki ve yakınlarındaki turizm amaçlı kullanılabilecek olan havaalanları ve bu havaalanlarına yakınlık ana yollar kullanılarak inşa edilmiştir. Havaalanlarına olan mesafeler 0-10 km, 10-20 km, 20-30 km, 30-40 km ve 50 km'den daha uzak mesafede olmak üzere tanımlanmıştır. Yüksek değerli alanlar sürdürülebilir turizm altyapısı açısından avantajlı bölgeler olarak belirlenmiştir.

3.5. Turizm Sezonu: Karadeniz Bölgesi'ndeki turizm potansiyeli olan alanlar, turizm faaliyetleri yoğunluğu ve turizm yaplabilen dönemler açısından değerlendirilmiştir. Değerlendirmede, bütünsel turizm yapma imkanı olan yerler (bilinen ve en çok ziyaret edilen alanlar), belirli dönemlerde turizm yapma imkanı olan yerler (1800 metrenin
üzerindeki alanlar), sahiller ve korunan alanlar kullanılmıştır. Farklı alanlar için katsayılar belirlenmiş, bu katsayılar 10X10 km'lik çalışma birimlerine aktarılmıştır. Çalışma karelerindeki toplam değerlerin yüksek olduğu alanlar, sürdürülebilir turizm altyapısı açısından avantajlı bölgeler olarak belirlenmiştir.

Organik/İyi Tarım Fırsatları

1. Tarımsal Kapasite: Bölgede organik/iyi tarım faaliyetlerinin önerilebileceği alanların tespiti için mevcut tarım alanlarının toprak verimliliği ve tarım açısından uygunluğu değerlendirilmiştir.

Resim 4.7: Çoruh Vadisinde tarım
2. **Kirlilik:** Organik/iyi tarım faaliyetlerinin kirlilik kaynaklarından uzak alanlarda yapılması gereklidir. Kirliliğin az olduğu uygun alanların bulunması için aşağıdaki alt başlıklar 2002 Organik Tarım Esasları ve Uygulanmasına İlişkin Yönetmelik ölçütleri kullanılarak değerlendirilmiştir.

2.1. **Yerleşim Etkisi:** Karadeniz Bölgesi’nde organik/iyi tarım potansiyeli olan alanların ortaya çıkartılması için yerleşim etkisinden uzak alanlar belirlenmiştir. Yerleşimlerin yoğunluğu, nüfus büyüklüğü ve yerleşimlerden uzaklıklar göz önünde bulundurularak oluşturulan yerleşim etkisi yüzeyi, 10X10 km’lik çalışma birimlerine aktarılmıştır. Yerleşim etkisinin az olduğu alanlar organik/iyi tarıma uygunluğuna yüksek alanlar olarak değerlendirilmiştir.

2.2. **Sanayi ve Maden Alanları:** Karadeniz Bölgesi’nde organik/iyi tarım potansiyeli olan alanların ortaya çıkartılması için sanayi ve maden alanlarının etkisinden uzak tarım alanları belirlenmiştir. Bu kapsamda, kirlilik kaynağı oldukları için organik tarım faaliyetlerinden belirli bir uzaklukta olması gereken sanayi ve maden alanlarının etkisinden uzak bir tampon alanı oluşturulmuştur. Bu alanlar tarım alanlarından çıkarılmış ve 10X10 km’lik çalışma karelerine aktarılmıştır. Değerlendirmede bu alanların çalışma birimlerindeki yüzey alana olan oranları kullanılmıştır. Sanayi ve maden alanlarının etkisinin az olduğu alanlar organik/iyi tarıma uygunluğuna yüksek alanlar olarak değerlendirilmiştir.

2.3. **Yoğun Tarım Aktivitesi:** Karadeniz Bölgesi’nde organik/iyi tarım potansiyeli olan alanların ortaya çıkartılması için yoğun tarım aktivitesinin az olduğu alanlar belirlenmiştir. Bu kapsamda, 50 hektardan büyük tarım alanları 10X10 km’lik çalışma karelerine aktarılmıştır. Tarımsal alan kullanım yoğunluğunu belirlemek için, çalışma karelerindeki toplam yerleşim ve tarımsal alan büyüklüğünün yüzey alana oranları kullanılmıştır. Tarımsal alan kullanım yoğunluğunun düşük olduğu alanlar organik/iyi tarıma uygunluğuna yüksek alanlar olarak değerlendirilmiştir.

2.4. **Kirlilik Kaynakları:** Karadeniz Bölgesi’nde organik/iyi tarım faaliyetlerinin önerilebileceği alanların tespiti için tarımsal kirlilik, sanayi ve evsel atıkların neden olduğu kirlilik, akarsulardaki kirlilik vb. kirlilik kaynaklarının ve karayollarından doğan kirliliğin etkisinin az olduğu alanlar tespit edilmiştir. Kirlilikle ilgili bilgiler Kasım 2010 tarihinde 17 ilin İl Çevre ve Orman Müdürlüğü ve Orman Bölge Müdürlükleri’nden uzmanların katılımıyla gerçekleştiriltilen “Tehdit Analizi Çalıştayı”da gerçekleştirilmiş. Bu

3.2. Yerleşimlere Yakınlık: Karadeniz Bölgesi’nde pazarlama açısından organik/iyi tarım potansiyeli olan alanların ortaya çıkartılması için bölgedeki il merkezlerine yakınlık durumları değerlendirilmiştir. Bu kapsamda, bölgede en büyük pazar Samsun olduğu ve Samsun’da halihazırda bir organik pazar bulunduğu için bu il merkezine daha yüksek ağırlık, diğer il merkezlerine daha düşük ağırlıklı olmak üzere katsayılar verilmiş ve uzaklık mesafeleri dikkate alınmıştır. İl merkezlerine uzaklıklar 6 grupta sınıflandırılmıştır: 0-10 km, 10-20 km, 20-30 km, 30-40 km, 40-50 km ve 50 km’den daha uzak mesafe. Bu sınıflara göre değerler atanarak 10X10 km’lik çalışma birimlerindeki toplam değerler elde edilmiştir. Yüksek değerli alanlar, pazarlama kapasitesi açısından organik/iyi tarıma uygunluğu yüksek alanlar olarak değerlendirilmiştir.
Alandaki Koruma Yapıları

Biyolojik çeşitliliğin korunmasında çeşitli statülerdeki korunan alanlar önemli bir rol oynarlar. Ancak korunan alanların, toplam alanlara oranının düşük olması (en iyi ihtimalle %10 seviyelerinde), korunan alanların tek başına biyolojik çeşitliliğin orta ve uzun vadidede korunmasında yetersiz kalmasına neden olmaktadır. Bu nedenle, korunan alanlar dışındaki sahalarda da biyolojik çeşitliliğin korunmasının, sektörel plan ve uygulamaları dahil edilmesi önem kazanmaktadır.

A. Korunan alanlar

Bölgede 5 adet milli park, 10 tabiatı koruma alanı, 4 tabiat parkı, 17 yaban hayati geliştirme sahası ve 1 özel çevre koruma alanı bulunmaktadır (bkz Harita 5.1, Tablo 5.1). Tüm korunan alanların yüzölçümü 301.197 hektardır.
Harita 5.1: Karadeniz Bölgesi korunan alanlar haritası
<table>
<thead>
<tr>
<th>Adı</th>
<th>Koruma Statüsü</th>
<th>İl</th>
<th>Alan (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilgaz Dağları</td>
<td>Milli Park</td>
<td>Çorum</td>
<td>832</td>
</tr>
<tr>
<td>Yedigöller</td>
<td>Milli Park</td>
<td>Bolu</td>
<td>1637</td>
</tr>
<tr>
<td>Küre Dağları</td>
<td>Milli Park</td>
<td>Kastamonu</td>
<td>37408</td>
</tr>
<tr>
<td>Altindere Vadisi</td>
<td>Milli Park</td>
<td>Trabzon</td>
<td>4467</td>
</tr>
<tr>
<td>Kaçkar Dağları</td>
<td>Milli Park</td>
<td>Rize-Artvin</td>
<td>48568</td>
</tr>
<tr>
<td>Demirciöknü</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Düzce</td>
<td>437</td>
</tr>
<tr>
<td>Çıtderesi</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Karabük</td>
<td>356</td>
</tr>
<tr>
<td>Kavaklı</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Karabük</td>
<td>380</td>
</tr>
<tr>
<td>Akdoğan ve Rüzgarlı Ebeçami</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Bolu</td>
<td>195</td>
</tr>
<tr>
<td>Sarıkum</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Sinop</td>
<td>926</td>
</tr>
<tr>
<td>Kökez</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Bolu</td>
<td>330</td>
</tr>
<tr>
<td>Kalefındığı</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Bolu</td>
<td>477</td>
</tr>
<tr>
<td>Örümcek Ormanları</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Gümüşhane</td>
<td>242</td>
</tr>
<tr>
<td>Çamburnu</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Artvin</td>
<td>190</td>
</tr>
<tr>
<td>Hacıosman</td>
<td>Tatbiatı Koruma Alanı</td>
<td>Samsun</td>
<td>131</td>
</tr>
<tr>
<td>Hamsilos</td>
<td>Tatbat Parkı</td>
<td>Sinop</td>
<td>57</td>
</tr>
<tr>
<td>Abant Gölü</td>
<td>Tatbiat Parkı</td>
<td>Bolu</td>
<td>15</td>
</tr>
<tr>
<td>Çamlıhemşin Kaçkar Dağıları</td>
<td>Tatbat Parkı</td>
<td>Ankara</td>
<td>106</td>
</tr>
<tr>
<td>Uzungöl</td>
<td>Tatbiat Parkı</td>
<td>Trabzon</td>
<td>1692</td>
</tr>
<tr>
<td>Karabük Yenice</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Karabük</td>
<td>26984</td>
</tr>
<tr>
<td>Bafra Kızılirmak Deltası</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Samsun</td>
<td>5086</td>
</tr>
<tr>
<td>Beypazarı Kapaklı</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Ankara</td>
<td>5831</td>
</tr>
<tr>
<td>Gölkaya Efteni Gölü</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Düzce</td>
<td>772</td>
</tr>
<tr>
<td>İspir Verçenik</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Erzurum</td>
<td>52308</td>
</tr>
<tr>
<td>Karabük-Safranbolu Sirçali-Düzce</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Karabük</td>
<td>413</td>
</tr>
<tr>
<td>Azdavay Kartdağ</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Kastamonu</td>
<td>11277</td>
</tr>
<tr>
<td>Tosya Gavurdağı</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Kastamonu</td>
<td>6420</td>
</tr>
<tr>
<td>Abant</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Bolu</td>
<td>165</td>
</tr>
<tr>
<td>Ulus Sökü</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Bartın</td>
<td>40490</td>
</tr>
<tr>
<td>Çamlıhemşin Kaçkar Dağıları</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Rize</td>
<td>4274</td>
</tr>
<tr>
<td>Taşköprü Elekdağ</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Kastamonu</td>
<td>3169</td>
</tr>
<tr>
<td>Bozburun</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Sinop</td>
<td>1010</td>
</tr>
<tr>
<td>Yedigöller-Yeşilöz</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Zonguldak</td>
<td>9250</td>
</tr>
<tr>
<td>Ilgaz</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Kastamonu</td>
<td>15862</td>
</tr>
<tr>
<td>Sülün</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Bartın</td>
<td>4250</td>
</tr>
<tr>
<td>Terme Gölardı Simenlik</td>
<td>Yaban Hayati Geliştirme Sah.</td>
<td>Samsun</td>
<td>337</td>
</tr>
<tr>
<td>Uzungöl</td>
<td>Özel Çevre Koruma Alanı</td>
<td>Trabzon</td>
<td>14853</td>
</tr>
</tbody>
</table>
B. Muhabafa Ormanları ve Muhabafa İşletme Sınıfı

Bu metinler incelendiğinde, gerek ayrılma kriterleri gerekse de işletme amaç olsun, biyolojik çeşitliliğin konu edilmediği görülebilir. Muhabafa ormanı olarak ayrılan alanlarda yapılacak planlar uyarınca, bina, yol ve tesis inşaatı gibi yapılaşma faaliyetlerine; ağaçlandırma, gençleştirme ve bakım kesimleri gibi faaliyetlerine; piknik, avcılık, ve ot biçme gibi insan faaliyetleri gerçekleştirilmektedir. Bunların yanı sıra 2004 yılında Orman Kanununun 16. Maddesinde yapılan bir değişiklik ve bunun uygulanmasına yönelik hazırlanan bir yönetmelikle, muhabafa ormanlarına ve diğer muhabafa karakterli orman alanlarında (tohum meşcereleri, gen koruma alanları, genel ince lenme yerleri, endemik ve korunması gereken ekosistemler bulunduğu alanlar) maden aranması ve işletme olanaklı hale gelmiştir. Ancak, 2010 yılında kanun ve yönetmelikte yapılan yeni düzenlemelerle bu sahalarda maden arama ve işletme faaliyetleri kısıtlı hale getirilmiştir.

Dolayısıyla, biyolojik çeşitliliğin korunması açısından bakıldığında, muhabafa ormanlarının doğrudan bir işlev gördüğü söylenebilir. Ancak, diğer işletilen orman alanlarına göre orman işletmeciliğinin ve insan faaliyetlerinin daha kısıtlı tutulması, ve muhabafa ormanlarının belirlenme kriterlerinin de ortaya koyduğu gibi genellikle daha sarp ve ulaşılması güç alanlarda olmalarından ötürü, barındırdıkları biyolojik çeşitliliğin korunmasında bir rol oynadıkları söylenebilir.

C. Diğer önemli alanlar

Dünyada çeşitli doğa koruma örgütleri ve akademik kurumlar tarafından belirlenmiş ve belli kriterler ışığında korumada öncelikli doğal alanları tanımlayan statüler de bulunmaktadır. Bu yaklaşımlardan en bilindiği Dünya Kuşları Koruma Kurumu (BirdLife International) tarafından geliştirilen ve neredeyse tüm dünyaya uygulanmış olan öncelikli kuş alanları yaklaşımıdır. Kuşların tehlike durumlarının, dar yayılış gösteren türlerin, yoğunlaşan türlerin ve biyoma özel türlerin ele alındığı bu yaklaşım sonucunda her bölgede öncelikli kuş alanları atanmaktadır. Buna benzer yaklaşımlarla öncelikli bitki alanları ve öncelikli doğa alanları kavramları ortaya atılmış ve belli ülkelerde bu alanlar belirlenmiştir.

Son olarak Doğa Derneği tarafından 2006 yılında yayınlanan önemli doğa alanları envanteri Karadeniz Bölgesinde 33 adet önemli doğa alanı belirlemiştir (Eken ve ark., 2006). Tüm bu alanların listesi aşağıdaki tabloda verilmektedir.

Tablo 5.2. Karadeniz bölgesinde, diğer yaklaşımlarla tespit edilmiş çeşitli tüür grupları için önemli alanlar.

<table>
<thead>
<tr>
<th>Alanın adı</th>
<th>Statüsü</th>
<th>Alanı (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abant Dağları</td>
<td>ÖBA</td>
<td>67315</td>
</tr>
<tr>
<td>Yeniçağa Gölü</td>
<td>ÖBA</td>
<td>1074</td>
</tr>
<tr>
<td>Yukarı Gerede Vadisi</td>
<td>ÖBA</td>
<td>1451</td>
</tr>
<tr>
<td>Nallıhan Kuş Cenneti</td>
<td>ÖBA</td>
<td>1742</td>
</tr>
<tr>
<td>Yenice Ormanları</td>
<td>ÖBA</td>
<td>74235</td>
</tr>
<tr>
<td>Batı Küre Dağları</td>
<td>ÖBA</td>
<td>495765</td>
</tr>
<tr>
<td>Ilgaz Dağları</td>
<td>ÖBA</td>
<td>79254</td>
</tr>
<tr>
<td>Sinop Yarımadası</td>
<td>ÖBA</td>
<td>10585</td>
</tr>
<tr>
<td>Kızılırmak Deltası</td>
<td>ÖBA</td>
<td>17043</td>
</tr>
<tr>
<td>Haciosman Longozu</td>
<td>ÖBA</td>
<td>238</td>
</tr>
<tr>
<td>Yeşilirmak Deltası</td>
<td>ÖBA</td>
<td>8989</td>
</tr>
<tr>
<td>Akdağ</td>
<td>ÖBA</td>
<td>58043</td>
</tr>
<tr>
<td>Kelkit Vadisi</td>
<td>ÖBA</td>
<td>100</td>
</tr>
<tr>
<td>Giresun Dağları</td>
<td>ÖBA</td>
<td>218047</td>
</tr>
<tr>
<td>Doğu Karadeniz Dağları</td>
<td>ÖBA</td>
<td>1545631</td>
</tr>
<tr>
<td>Çoruh Vadisi</td>
<td>ÖBA</td>
<td>162834</td>
</tr>
<tr>
<td>Karçal Dağları</td>
<td>ÖBA</td>
<td>99536</td>
</tr>
<tr>
<td>Yalnızçam Dağları</td>
<td>ÖBA</td>
<td>201781</td>
</tr>
<tr>
<td>Abant Dağları</td>
<td>ÖDA, ÖKA</td>
<td>124829</td>
</tr>
<tr>
<td>Sündiken Dağları</td>
<td>ÖDA, ÖKA</td>
<td>218068</td>
</tr>
<tr>
<td>Sarıyar Barajı</td>
<td>ÖDA, ÖKA</td>
<td>31754</td>
</tr>
<tr>
<td>Bolu Dağları</td>
<td>ÖDA, ÖKA</td>
<td>70298</td>
</tr>
<tr>
<td>Yeniçağa Gölü</td>
<td>ÖDA, ÖKA</td>
<td>1492</td>
</tr>
<tr>
<td>Köroğlu Dağları</td>
<td>ÖDA, ÖKA</td>
<td>146330</td>
</tr>
<tr>
<td>Kozlu Kıyıları</td>
<td>ÖDA, ÖKA</td>
<td>9239</td>
</tr>
<tr>
<td>Sofular Tepeleri</td>
<td>ÖDA</td>
<td>36241</td>
</tr>
<tr>
<td>Amasra Kıyıları</td>
<td>ÖDA, ÖKA</td>
<td>17413</td>
</tr>
<tr>
<td>Yenice Ormanları</td>
<td>ÖDA, ÖKA</td>
<td>135795</td>
</tr>
<tr>
<td>Área</td>
<td>Código</td>
<td>Código</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Kösedağ</td>
<td>ÖDA</td>
<td>80051</td>
</tr>
<tr>
<td>Kızılcahamam Ormanları</td>
<td>ÖDA, ÖKA</td>
<td>14689</td>
</tr>
<tr>
<td>Küre Dağları</td>
<td>ÖDA, ÖKA</td>
<td>521368</td>
</tr>
<tr>
<td>İlgaz Dağları</td>
<td>ÖDA, ÖKA</td>
<td>152653</td>
</tr>
<tr>
<td>Sinop Yarımadası</td>
<td>ÖDA, ÖKA</td>
<td>18600</td>
</tr>
<tr>
<td>Kazankaya Vadisi</td>
<td>ÖDA, ÖKA</td>
<td>5621</td>
</tr>
<tr>
<td>Yedikır Barajı</td>
<td>ÖDA, ÖKA</td>
<td>2583</td>
</tr>
<tr>
<td>Akdağ - Amasya</td>
<td>ÖDA, ÖKA</td>
<td>58227</td>
</tr>
<tr>
<td>Kızılırmak Deltası</td>
<td>ÖDA, ÖKA</td>
<td>31327</td>
</tr>
<tr>
<td>Yeşilirmak Deltası</td>
<td>ÖDA, ÖKA</td>
<td>20658</td>
</tr>
<tr>
<td>Kelkit Vadisi</td>
<td>ÖDA, ÖKA</td>
<td>176768</td>
</tr>
<tr>
<td>Balıca Tepeleri</td>
<td>ÖDA</td>
<td>28034</td>
</tr>
<tr>
<td>Nallıhan Tepeleri</td>
<td>ÖDA</td>
<td>82667</td>
</tr>
<tr>
<td>Giresun ve Ordu Kıyıları</td>
<td>ÖDA, ÖKA</td>
<td>56594</td>
</tr>
<tr>
<td>Giresun Dağları</td>
<td>ÖDA, ÖKA</td>
<td>213322</td>
</tr>
<tr>
<td>Gölova Gölleri</td>
<td>ÖDA, ÖKA</td>
<td>4931</td>
</tr>
<tr>
<td>Kop Dağı</td>
<td>ÖDA, ÖKA</td>
<td>44319</td>
</tr>
<tr>
<td>Doğu Karadeniz Dağları</td>
<td>ÖDA, ÖKA</td>
<td>1728316</td>
</tr>
<tr>
<td>Çoruh Vadisi</td>
<td>ÖDA, ÖKA</td>
<td>63765</td>
</tr>
<tr>
<td>Karçal Dağları</td>
<td>ÖDA, ÖKA</td>
<td>140489</td>
</tr>
<tr>
<td>Yalnızçam Dağları</td>
<td>ÖDA, ÖKA</td>
<td>196504</td>
</tr>
<tr>
<td>Olur - Oltu Bozkırları</td>
<td>ÖDA, ÖKA</td>
<td>104907</td>
</tr>
<tr>
<td>Tortum Havzası</td>
<td>ÖDA, ÖKA</td>
<td>189855</td>
</tr>
</tbody>
</table>

ÖBA: Önemli Bitki Alanı, **ÖKA:** Önemli Kuş Alanı, **ÖDA:** Önemli Doğa Alanı
Öncelikli Biyolojik Çeşitlilik Alanlarının Seçimi

Sistematik Koruma Planlaması (SKP) çalışmalarında korumada öncelikli alanlar ağının belirlenmesine yönelik analizler, farklı etmenler arasında optimum dengeyi kumaya çalışarak verimli alanların bütününü bulmayı hedefler. Bu çalışmada da korumada öncelikli alanlar seçilirken biyolojik çeşitlilik verilerinin yanı sıra, koruma çalışmalarını gereksiniminin ne kadar acil olduğu (koruma aciliyeti), bu çalışmaların yürütülmesinin ne ölçüde zor olacağı (koruma zorluğu), koruma çalışmalarına yöresel özelliklerin getireceği ek fırsatlar (koruma fırsatları) ve ormancılık üretimi ile az düzeyde çatışma gibi faktörler analize dahil edilmiştir.

Tüm analizler, Türkiye’de gerçekleştirilmiş olan diğer SKP çalışmalarındaki benzer biçimde, 10 km x 10 km’lik UTM karelerinden oluşan çalışma birimleri bazında yürütülmüştür. Verilerin çoğunluğu bu çözünürlükte toplanmıştır. Daha yüksek çözünürlükte hazırlanmış olan veriler de analizde kullanılmak üzere bu çalışma birimlerine aktarılacaktır.

A. Verilerin çalışma birimlerine aktarılması

Koruma aciliyeti, koruma zorluğu, orman üretim miktarları ve tür yayılış modellemesi çalışmalarının sonuçları, yürütülen çalışma ölçeğinden daha ayrıntılı ölçektekolçetilmiştir. 25 metre çözünürlükte (koruma aciliyeti ve zorluğu) ve 82 metre çözünürlükte (örneğin) oluşturulmuş olan verilerde, çalışma biriminin büyüklüğünü göre ortalama değerler alınmış ve bu değerler 10 km x 10km’lik karelere yansıtılmıştır. 150 metre çözünürlükte yürütülmüş olan tür yayılış modellenen sonuçları ise, yayılışının kare içinde kapladığı alanı tüm alana oran ve bu alanın toplam miktarı göz önünde bulundurularak çalışma karelerine aktarılmıştır.

Bu atamalar sonrasında, türlerin kareler bazında var olan kabul edilebilmeleri için gerekli eşik değerler burunun daki grupları için ayrı ayrı tanımlanmıştır. Bu kapsamda, bir türün bir çalışma biriminde var olan dağılımların halkası için gereksinim duyulan oranlar %10 ile %50 arasında değişmiş, alanlarda ise 20 km²’ye varan değerler kullanılmıştır.

Yaşam birliklerinin çalışma birimleri içindeki varlıkların doğrudan yüzölçümü cinsinden tanımlanmış ve analizde bu şekilde kullanılmıştır. Ancak birim içindeki toplam yaşam birlikleri alanın 10 hektarka altında olması durumunda bu birimler koruma hedefine ulaşmaya katkı koyabilecek kareler arasında dahil edilmemeliştir.

Canlı türlerin ait verilerin çoğunluğu (10X10 km’lik çalışma alanı bazındaki kelebek ve yayılış modellemesi yapılan kuş ve büyük memeli türleri hariç), uzmanlar tarafından tanımlanan yayılışlar ve/veya nokta kayıtları biçimindedir. Yayılış alanları biçiminde olan tür verileri (sürüngenler, amfibiler ve küçük memeler) 10X10 km’lik çalışma birimleri olan karele aktarılan, türlerin yayılışlarının karelerin %10’undan fazlasını kapsaması gereği
türün karede var kabul edilmesi için ön koşul olarak getirilmiştir. Nokta kayıtlarında ise (endemik bitkiler, bazı sürüngenler, amfibiler, kuşlar ve küçük memeliler), kaydın bulunduğu karelerde tür var olarak kabul edilmiştir.

B. Önem puanlarının belirlenmesi

Önem puanları; biyolojik çeşitlilik göstergesi olarak kullanılan, çalışma çerçevesinde önelimli olarak değerlendirilmiştir ve analize dahil edilmiş tür ve yaşambirliklerinin her biri için koruma hedeflerine ulaşmanın önemi yansıtır. Tür veya yaşambirliğinin nadirliği, tehlike statüsü ve yayılış alanının genişliği, sınırları gibi faktörlerin belirleyici olduğu puan, ceza puanı olarak da adlandırılır. Farklı gruplara ait önem puanları belirlenirken, diğer SKP çalışmaları ile uyumlu olarak aşağıdaki kriterler kullanılmıştır. Bu kriterlerin analizlerde kullanılan farklı canlı grupları için nasıl ele alındığı aşağıda detaylandırılmıştır.

- **Bitkiler:** Bitki türlerinin önem puanlarını belirlemek için iki ölçüt göz önünde bulundurulmuştur: Türün endemik olup olmadığı ve IUCN ulusal tehdit statüsü. Bu iki ölçüt, diğer canlı grupları için geliştirilen puanlama sistemi ile uyum sağlamış şekilde birleştirilen tek bir formülde birleştirilmiş ve tür önem puanı bu formül ile hesaplanmıştır. Sonuçta 3 ile 4 arasında değişen öncelik puanları elde edilmiştir.

\[
\text{Tür Önem Puanı} = (\text{Endemiklik puanı} + \text{Tehlike statüsü puanı}) - 2
\]

Endemiklik puanı:
- Endemik: 3 puan
- Bölgesel endemik: 2 puan
- Endemik değil: 1 puan

Tehlike statüsü puanı:
- CR, EN: 3 puan
- VU, DD: 2 puan
- NT, LC: 1 puan

\[
\text{Tür Önem Puanı} = (\text{Küresel tehlike statüsü puanı} + \text{Ulusal tehlike statüsü puanı}) - 1.5
\]

Tehlike statüsü puanı:
- CR, EN: 3 puan
- VU, DD: 2 puan
- NT, LC: 1 puan
Herpetofauna: Sürüngen ve çift yaşamlı türlerinin önem puanlarını 3 etken ele alınarak belirlenmiştir: türlerin endemiklik durumları, küresel ve ulusal tehlike statüleri. Bu kapsamda 2009 yılında IUCN tarafından gerçekleştirilen küresel ve ulusal tehlike statüsü değerlendirmeleri kullanılmıştır. Sonuçta 2 ile 5 arasında değişen öncelik puanları elde edilmiştir.

Tür Önem Puanı = (Endemiklik Puanı + Küresel tehlike statüsü puanı + Ulusal tehlike statüsü puanı) / 2
Endemiklik puanı:
<table>
<thead>
<tr>
<th>Endemik</th>
<th>3 puan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bölgesel endemik</td>
<td>2 puan</td>
</tr>
<tr>
<td>Endemik değil</td>
<td>1 puan</td>
</tr>
</tbody>
</table>

Tehlike statüsü puanı:
CR, EN	3 puan
VU, DD	2 puan
NT, LC	1 puan

Küçük memeliler: Küçük memeli türlerinin önem puanlarını 3 etken ele alınarak belirlenmiştir: türlerin endemiklik durumları, küresel ve ulusal tehlike statüleri. Sonuçta 1.5 - 2 arasında değişen öncelik puanları elde edilmiştir.

Tür Önem Puanı = (Endemiklik Puanı + Küresel tehlike statüsü puanı + Ulusal tehlike statüsü puanı) / 2
Endemiklik puanı:
<table>
<thead>
<tr>
<th>Endemik</th>
<th>3 puan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bölgesel endemik</td>
<td>2 puan</td>
</tr>
<tr>
<td>Endemik değil</td>
<td>1 puan</td>
</tr>
</tbody>
</table>

Tehlike statüsü puanı:
CR, EN	3 puan
VU, DD	2 puan
NT, LC	1 puan

Büyük memeliler: IUCN Kırmızı Listesi kategorileri ile, lokal, nadir ve tehlikede olup olmadıklarına göre türlere öncelik puanı verilmiştir. Sonuçta 2 - 4 arasında değişen öncelik puanları elde edilmiştir.

Tür Önem Puanı = Endemiklik Puanı + (Küresel tehlike statüsü puanı + Ulusal tehlike statüsü puanı+1) / 2
Endemiklik puanı:
Endemik	3 puan
Bölgesel endemik	2 puan
Endemik değil	1 puan
Kelebekler: Kelebek türlerinin önem puanlarını belirlemede iki ölçüt göz önünde bulundurulmuştur: Türün endemik olup olmaması ve ulusal tehlike statüsü. Türlerin ulusal tehlike statüleri için Türkiye’deki Kelebeklerin Kırmızı Kitabı verileri kullanılmıştır (Karaçetin ve Welch, 2011). Sonuçta 1 ile 5 arasında değişen öncelik puanları elde edilmiştir.

Tür Önem Puanı = (Endemiklik puanı + Tehlike statüsü puanı) – 1

Endemiklik puanı:
- Endemik: 3 puan
- Bölgesel endemik: 2 puan
- Endemik değil: 1 puan

Tehlike statüsü puanı:
- CR, EN: 3 puan
- VU, DD: 2 puan
- NT, LC: 1 puan

Yaşam Birlikleri: Genel olarak yaşambirliklerinin öncelik puanı 1 olarak belirlenmiştir. Ancak bölgede özel önem taşıyan veya nadir olan sucul ve kumul yaşambirlikleri için öncelik puanı olarak 3 kullanılmıştır.
C. Koruma hedeflerinin belirlenmesi

Koruma hedefleri, değerlendirmeye dahil edilen canlı türleri ve yaşambirliklerinin ne kadar çalışma biriminde ya da alanda korunması için ideal olarak hedeflendiğini tanımlayan bir parametredir. Canlı türleri için koruma hedefleri 10X10 km’lik çalışma birimi olan kareler bazında tanımlanırken, yaşambirliklerinin koruma hedefleri, karelerde toplam ne kadar bir yüzey alan kaplamalarının hedeflendiğine bağlı olarak km² cinsinden tanımlanır. Türkiye’deki SKP çalışmalarında, özel türler dışında koruma hedefi 10X10 km’lik çalışma karesi olarak 1 temsiliyettir. Ancak bireylerin çok geniş yaşam alanlarına gereksinim duydukları veya türlerin varlıklarını sürdürdükleri için birden fazla karedeki ayrı popülasyonlara gerekşim duyduğu durumlarda, hedef 2 veya daha çok temsiliyet olabilmektedir. Bu çalışmada da türler için koruma hedefleri aynı anlayısla ele alınmıştır ve 1-4 karede temsiliyet hedeflenmiştir.

Yaşambirlikleri için koruma hedefleri hesaplanırken gözönüne alınan etmenler, yaşambirliğinin çalışma bölgesindeki alanı ve varlığının sağlıklı olarak devam için gerekli minimum alan büyüklüğudur. Bu çalışmada yaşambirlikleri için genel olarak koruma hedefleri, çalışma bölgesindeki toplam alanlarının %5'i olarak belirlenmiştir. Ancak özel önem taşıyan ve nadir sistemler için koruma hedefi olarak, nadirlikleri ölçüsünde %20-50 temsili hedeflenmiştir.

4. Çalışma birimlerinin analizde alacağı değerlerin belirlenmesi

Analiz sırasında, çalışma birimleri atandıkları statüye göre farklı biçimde ele alınır. Algorımeta ilk önce rasgele biçimde seçilen ve çekirdek portföy adı verilen bir kaç çalışma birmiyle analize başlar. Çalışma birimlerinin atandıkları statüler, bu çekirdek portföy içindeki yerlerini tanımlar. Ele alınabileceklerin olası statüler ve bu çalışmadaki uygulama aşağıdaki biçimdedir.

<table>
<thead>
<tr>
<th>Statü</th>
<th>Çalışma biriminin çekirdek portföyde yer alma olasılığı, aynı statüden diğer çalışma birimleriyle aynıdır. Özel kareler dışındakiler bu statüye atanmıştır.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statü-0</td>
<td>Çalışma biriminin çekirdek portföyde yer alma olasılığı, aynı statüden diğer çalışma birimleriyle aynıdır. Özel kareler dışındakiler bu statüye atanmıştır.</td>
</tr>
<tr>
<td>Statü-1</td>
<td>Çalışma birimi çekirdek portföyde yer alacaktır. Ancak sonuç portföyünde yer alp almayıcagı bilinmez. Yalnızca mevcut korumanın kare içindeki etkisi nedeniyle bazı kareler bu statüye atanmıştır. (Senaryo 2, 5 ve 6)</td>
</tr>
<tr>
<td>Statü-2</td>
<td>Çalışma birimi çekirdek portföyde yer alır ve çıkartlamaz (dolayısıyla nihai portföy içinde yer alır. Yalnızca mevcut korumanın kare içindeki etkisi nedeniyle bazı kareler bu statüye atanmıştır. (Senaryo 2 ve 5)</td>
</tr>
<tr>
<td>Statü-3</td>
<td>Çalışma birimi sonuç portföyünde yer alamaz. Çekirdek portföyde yer almaz ve sonradan eklenmez. Genellikle yerleşim yerlerinin karenin içinde çok önemli alan kaplaması veya başka nedenlerle koruma yapılmayacak alanlar bu statüye atanır. Çalışma bölgesinde bir kare içindeki maksimum yerleşim oranı %34 olması nedeniyle, hiçbir kare bu statüye atanmıştır.</td>
</tr>
</tbody>
</table>
D. Alanların seçimi
Korumada öncelikli alanlar ağının seçiminde, bir optimizasyon yazılımı olan MARXAN kullanılmıştır (Ball ve ark., 2009). Bu yazılım farklı algoritmalar içerir. Bu çalışmada ‘sertleştirme benzetim algorитması’ temel alınmış, buna iyileştirme yöntemleri eklenmiştir. Sertleştirme Benzetim Algoritması (Simulated Annealing Algorithm), belirlenen bir çekirdek portföyün her aşamada bir veya birkaç planlama biriminin değiştirilmesi ve toplam maliyetsin hesaplanması ilkesine dayanır. İlk başlarda maliyetin yükselmesine olanak tanır da, hedefe yaklaşıldıkça eklenebilecek birimin maliyetini düşürür. Bu işlemler analiz süresini uzatır ama süre arttıkça en iyi portföyün bulunma olması giderek yükselir. Sertleştirme benzetiminde kullanılan optimizasyon algoritması için maaliyet fonksiyonun en yalın hali aşağıdaki biçimdedir:

$$\text{Toplam maliyet} = \sum_{i}^{j} \text{çalışma birimleri maliyeti} + \sum_{j}^{\text{gösterge}} \text{j için ceza puanı} + w \sum_{\text{çercevenin uzunluğu}}$$

Bu fonksiyonda ilk terim sonuç portföyündeki çalışma birimlerinin koruma maaliyetidir. İkinci terim, koruma hedefine ulaşamayan tüm biyoçeşitlilik göstergeleri için ceza puanlarının toplamıdır. Son terim ise toplam sınırların sınır uzunluğunun sınır etkisi parametresi ile çarpımıdır.

En uygun parametre ve değerlerin ortaya çıkartılması amacıyla program farklı parametre kombinasyonlarıyla çalıştırılmıştır. Ayrıca, farklı katsayıların etkilerinin görülebilmesi ve en uygun girdilerin belirlenebilmesi amacıyla farklı analiz senaryoları kurgulanmış ve uygulanmıştır. Bu senaryoların oluşturulma nedenleri ve hangi senaryolarla birlikte değerlendirilirdikleri Tablo 6.1’de verilmiştir. Senaryolarda kullanılan katsayılar, girdiler, ve kullanım amaçları Tablo 6.4’te özETLENmiştir.

Tablo 6.1: Senaryoların oluşturulma amaçları ve kıyaslar

<table>
<thead>
<tr>
<th>Senaryo Numarası</th>
<th>Kullanım amacı ve yöntemi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senaryo 0</td>
<td>Tüm diğer senaryolara ait çıktıların karşılıştırmaabileceği, alanların yalnızca içerdikleri biyolojik çeşitliliğe göre değerlendirildiği ve optimizasyonu bu temelde uygulandığı durumda yansıtır.</td>
</tr>
<tr>
<td>Senaryo 1</td>
<td>Koruma hedeflerine ulaşma açısından alternatifiş olana kadar her birinin optimizasyon sonucunu ne şekilde etkilediğinin belirlenmesi amacıyla kullanılmıştır. Senaryo 0 ile birlikte değerlendirilmiştir.</td>
</tr>
<tr>
<td>Senaryo 2</td>
<td>Bitişkenlik parametreleri için farklı değerlerin etki derecesinin belirlenmesi amacıyla kullanılmıştır. Senaryo 1 ile birlikte değerlendirilmiştir.</td>
</tr>
<tr>
<td>Senaryo 3</td>
<td>Bitişkenlik parametreleri için farklı değerlerin etki derecesinin belirlenmesi amacıyla kullanılmıştır. Senaryo 1 ile birlikte değerlendirilmiştir.</td>
</tr>
<tr>
<td>Senaryo 4</td>
<td></td>
</tr>
</tbody>
</table>
Senaryo 5 Bu senayolar, alandaki korumanın etkisine ve bu etkiye verilen ağırlık bağlı olarak optimizasyon sürecinin nasıl etkilendiğini belirlemek amacıyla oluşturulmuştur. Senaryo 1 ile birlikte değerlendirilmiştir.

Senaryo 6 Koruma fırsatlarına verilecek ağırlıkların belirlenmesi amacıyla kullanılmıştır. Senaryo 0 ve Senaryo 11 ile birlikte değerlendirilmiştir.

Senaryo 7 Ormancılık faliyetlerine verilecek ağırlığın belirlenmesi amacıyla kullanılmıştır. Senaryo 0 ve Senaryo 11 ile birlikte değerlendirilmiştir.

Senaryo 8 Koruma sırlığı değerlerine verilecek ağırlığın belirlenmesi amacıyla kullanılmıştır. Senaryo 0 ve Senaryo 11 ile birlikte değerlendirilmiştir.

Senaryo 9 Koruma acil yeteneğe verilecek ağırlığın belirlenmesi amacıyla kullanılmıştır. Senaryo 0 ve Senaryo 11 ile birlikte değerlendirilmiştir.

Senaryo 10 Bu senaryo, daha önceki senaryoların sonuçları ışığında belirlenen ağırlıkların tek tek faktörlerle karşılaştırılması amacıyla oluşturulmuştur.

Senaryo 11 Bu senaryolar, tür ceza puanı ve alan koruma maaliyeti arasındaki dengenin araştırılması, ve en uygun dengenin belirlenmesi amacıyla oluşturulmuştur.

Senaryo 12 Bu senaryolar kullanılarak elde edilen sonuçlar çözüm portföyleri açısından karşılaştırılırken, Tablo 6.4’de verilen kare sayısı, hedefe ulaşamayan tür sayısı ve sonuç portföyünün toplam ceza puanı gibi bilgilerin yanı sıra, her bir biyoçeşitlilik unsuru için hedeflere ulaşma oranları, ve bunların önem puanları gibi sonuçlar da irdelenmiştir.

Analizde kullanılan ve senaryolarla göre değişmeyen parametrelerin değerleri aşağıdaki şekildedir. Her bir parametre için değeri belirlenirken, en verimli sonucun en hızlı üretimliği değerlerin araştırıldığı denemeler yapılmıştır.

Tablo 6.2: Analizde kullanılan algoritmalar ve parametreler

<table>
<thead>
<tr>
<th>Parametre</th>
<th>Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analizi tekrar sayısı</td>
<td>100</td>
</tr>
<tr>
<td>Algoritma</td>
<td>Sertleştirme benzetişim</td>
</tr>
<tr>
<td>Tekrarlayan iyileştirme yöntemi</td>
<td>Normal, ardından, iki adımda iyileştirme</td>
</tr>
<tr>
<td>Araştırma sayısı</td>
<td>50,000,000</td>
</tr>
<tr>
<td>Soğuma miktarı</td>
<td>10,000</td>
</tr>
<tr>
<td>Başlangıç oranı (çekirdek portföy yüzdesi)</td>
<td>0.3</td>
</tr>
</tbody>
</table>
E. Analiz sonuçları:
Farklı senaryolara göre yapılan analizlerin değerlendirilmesi sonucunda, 13 numaralı senaryoya en uygun senaryo olarak belirlenmiş ve nihai analiz bu senaryoya göre yürütülmüştür. Bu kararda etkili olan temel değerlendirmelerden bazıları şunlardır:

- Alternatif alanların belirlenmesi ve birinci aşamada dahil edilmesi, hedefe ulaşma hızını arttırmış ve tüm hedeflere ulaşılma olasılığını yükseltmiştir.
- İyi korunan alanlarda bulunan karelerin baştan sonuç portföyüne dahil edilmesi, çıktıın toplam maaliyetini arttırmıştır. Bu nedenle bu tip kareler, yalnızca getirdikleri fazladan değer nispetinde seçilebilmelerinin kolaylaştığı çekirdek portföyde tutulmuştur.
- Koruma zorluğu, ve ormançılık faaliyetleri, koruma aciliyeti ve koruma fırsatları toplam portföy maaliyetini daha fazla arttırmışlardır.
- Kare maaliyetini 100 kata kadar arttırmak, daha düşük maaliyetli bir portföy bulunmasını kolaylaştırmış, öte yandan tüm hedeflere ulaşmasını da engellememiştir.

Analiz sonucunda belirlenen optimum alan setinin her bir alt kümesindeki kare sayısı ve bu kümelerde hedefe ulaşılan unsur sayısı Harita 6.1.
de verilmektedir. Kabul edilen hedefe ulaşma oranı olan %85’in üzerine çıkılan ve 73 kareden oluşan alan seti, 100 tekrarın her birinde bulunan karelerden oluşmaktadır. Bu kareler, koruma öncelikli alanları oluşturan kareler olarak belirlenmiştir (bkz. Tablo 6.5).

Harita 6.1: Kare sayısına göre hedefe ulaşma oranındaki değişim

Toplam 6338 km²’lik yüzölçümüne sahip olan bu koruma öncelikli alanlar, proje bölgesindeki %7.87’sini oluşturmaktaadsız. Bu alanlarda, proje kapsamında değerlendirilen 696 tür ve
yaşambirliğinden 614'ü için (%88.22) koruma hedeflerine %100 ulaşılmaktadır. Diğer tür ve yaşambirlikleri için ise hedefe ulaşma oranları %0 ile % 94 arasına deşiflemektedir.

Koruma önceliğli alanların yüzölçümünün %11'i (690,78 km²) mevcut korunan alanlar ile örtüşmektedir. Örtüşen korunan alanlar ve örtüşme miktarı Tablo 6.3’te verilmiştir.

Tablo 6.3: Koruma önceliğli alanların mevcut korunan alanlar ile örtüşme miktarı

<table>
<thead>
<tr>
<th>Koruma Alanı</th>
<th>Statüsü</th>
<th>İl</th>
<th>Korunan alanın Koruma Etkiliği Değeri</th>
<th>Çakışan alan (hektar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bafra Kızılırmak Deltası</td>
<td>YHGS</td>
<td>Samsun</td>
<td>41.67</td>
<td>5085</td>
</tr>
<tr>
<td>Altindere Vadisi</td>
<td>MP</td>
<td>Trabzon</td>
<td>100</td>
<td>2562</td>
</tr>
<tr>
<td>Uzungöl</td>
<td>KA</td>
<td>Trabzon</td>
<td>0</td>
<td>4847</td>
</tr>
<tr>
<td>İspir Verçenik</td>
<td>YHGS</td>
<td>Erzurum</td>
<td>81.25</td>
<td>7027</td>
</tr>
<tr>
<td>Kaçkar Dağları</td>
<td>MP</td>
<td>Rize-Artvin</td>
<td>75</td>
<td>22925</td>
</tr>
<tr>
<td>Çamlıhemşin Kaçkar Dağları</td>
<td>YHGS</td>
<td>Rize</td>
<td>41.67</td>
<td>3643</td>
</tr>
<tr>
<td>Kökez Çok Yaşlı Göknar ormanı</td>
<td>TKA</td>
<td>Bolu</td>
<td>100</td>
<td>136</td>
</tr>
<tr>
<td>Gökleya Efteni Gölü</td>
<td>YHGS</td>
<td>Düzce</td>
<td>43.75</td>
<td>772</td>
</tr>
<tr>
<td>Ulus Sökü</td>
<td>YHGS</td>
<td>Bartın</td>
<td>58.33</td>
<td>7986</td>
</tr>
<tr>
<td>Çamkoru</td>
<td>TP</td>
<td>Ankara</td>
<td>45.83</td>
<td>106</td>
</tr>
<tr>
<td>Ilgaz Dağları</td>
<td>MP</td>
<td>Çorum</td>
<td>54.17</td>
<td>753</td>
</tr>
<tr>
<td>Ilgaz</td>
<td>YHGS</td>
<td>Kastamonu</td>
<td>43.75</td>
<td>12423</td>
</tr>
<tr>
<td>Terme Gölardı Simenlik</td>
<td>YHGS</td>
<td>Samsun</td>
<td>25</td>
<td>336</td>
</tr>
<tr>
<td>Kalefındığı</td>
<td>TKA</td>
<td>Bolu</td>
<td>91.67</td>
<td>477</td>
</tr>
</tbody>
</table>
Tablo 6.4: Farklı senaryolar ve katsayıları

<table>
<thead>
<tr>
<th>Sen. 0</th>
<th>Sen. 1</th>
<th>Sen. 2</th>
<th>Sen. 3</th>
<th>Sen. 4</th>
<th>Sen. 5</th>
<th>Sen. 6</th>
<th>Sen. 7</th>
<th>Sen. 8</th>
<th>Sen. 9</th>
<th>Sen. 10</th>
<th>Sen. 11</th>
<th>Sen. 12</th>
<th>Sen. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statüler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koruma Acilîyeti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Koruma Zorluğu</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Ormancılık</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Koruma Fırsatları</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Sırar etkisi</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Alternatiflişiz karelerin etkisi													
Bitişkenlik etkisi													
Koruma durumu													
Fırsat etkisi													
Ormancılık et.													
Koruma zorluğu et.													
Koruma acilîyeti et.													
tür ceza puani ve alan koruma maaliyeti dengesi													

<table>
<thead>
<tr>
<th>Planlama birimi sayısı</th>
<th>101</th>
<th>114</th>
<th>113</th>
<th>111</th>
<th>114</th>
<th>119</th>
<th>112</th>
<th>113</th>
<th>138</th>
<th>131</th>
<th>114</th>
<th>116</th>
<th>113</th>
<th>108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedefe ulaşılaman UNSUR sayısı</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ceza puani</td>
<td>104.9</td>
<td>132.1</td>
<td>131.2</td>
<td>4</td>
<td>1</td>
<td>119.0</td>
<td>112.0</td>
<td>49.2</td>
<td>48.7</td>
<td>7</td>
<td>4.7</td>
<td>75.4</td>
<td>29.9</td>
<td>29.3</td>
</tr>
</tbody>
</table>

* Ceza puani yalnız aynı girdi dosyalarını kullanan senaryolar arasında karşılaştırılabilir.
Tablo 6.5: Optimum alan setini oluşturan kareler (koordinatlar UTM Zon 37 olarak verilmiştir)

<table>
<thead>
<tr>
<th>Kare no</th>
<th>Kare kodu</th>
<th>Kare alanı (km²)</th>
<th>Öncelikli Alan Adı</th>
<th>Doğu koordinat</th>
<th>Kuzey koordinat</th>
</tr>
</thead>
<tbody>
<tr>
<td>7115</td>
<td>BF50</td>
<td>100.00</td>
<td>Amasya</td>
<td>254994</td>
<td>4505007</td>
</tr>
<tr>
<td>7108</td>
<td>YL40</td>
<td>108.73</td>
<td>Amasya</td>
<td>237275</td>
<td>450533</td>
</tr>
<tr>
<td>1890</td>
<td>YL51</td>
<td>32.98</td>
<td>Amasya</td>
<td>245046</td>
<td>4515033</td>
</tr>
<tr>
<td>7738</td>
<td>YL52</td>
<td>14.36</td>
<td>Amasya</td>
<td>245414</td>
<td>4522448</td>
</tr>
<tr>
<td>7072</td>
<td>BE58</td>
<td>59.18</td>
<td>Amasya – Ezinepazari</td>
<td>255756</td>
<td>4486639</td>
</tr>
<tr>
<td>1854</td>
<td>WL17</td>
<td>100.59</td>
<td>Araç – Bakacak Dağı</td>
<td>12746</td>
<td>4591365</td>
</tr>
<tr>
<td>7614</td>
<td>WL24</td>
<td>79.48</td>
<td>Araç – Dikmen Dağı</td>
<td>21366</td>
<td>4561457</td>
</tr>
<tr>
<td>7877</td>
<td>EF70</td>
<td>100.00</td>
<td>Araklı – Karadere</td>
<td>574994</td>
<td>4505006</td>
</tr>
<tr>
<td>1958</td>
<td>EE69</td>
<td>100.00</td>
<td>Araklı – Güney Karadere Havzası</td>
<td>564994</td>
<td>4495006</td>
</tr>
<tr>
<td>135</td>
<td>EE79</td>
<td>100.00</td>
<td>Araklı – Güney Karadere Havzası</td>
<td>574994</td>
<td>4495006</td>
</tr>
<tr>
<td>8157</td>
<td>WM92</td>
<td>100.38</td>
<td>Batı Canik Dağları</td>
<td>96228</td>
<td>4635791</td>
</tr>
<tr>
<td>7227</td>
<td>FE27</td>
<td>83.90</td>
<td>Bayburt</td>
<td>624895</td>
<td>4475800</td>
</tr>
<tr>
<td>8207</td>
<td>XL59</td>
<td>100.24</td>
<td>Boyabat Doğu</td>
<td>154084</td>
<td>4601636</td>
</tr>
<tr>
<td>7896</td>
<td>FF00</td>
<td>100.00</td>
<td>Çaykara</td>
<td>604994</td>
<td>4505006</td>
</tr>
<tr>
<td>7899</td>
<td>FF01</td>
<td>100.00</td>
<td>Çaykara</td>
<td>604994</td>
<td>4515006</td>
</tr>
<tr>
<td>8208</td>
<td>XM51</td>
<td>100.23</td>
<td>Doğu Canik Dağları</td>
<td>155476</td>
<td>4621611</td>
</tr>
<tr>
<td>7182</td>
<td>DE27</td>
<td>85.03</td>
<td>Doğu Koyulhisar</td>
<td>424253</td>
<td>4475121</td>
</tr>
<tr>
<td>1781</td>
<td>UL31</td>
<td>101.05</td>
<td>Göltyaka</td>
<td>-171710</td>
<td>4543725</td>
</tr>
<tr>
<td>7259</td>
<td>EE47</td>
<td>43.35</td>
<td>Gümüşhane</td>
<td>546081</td>
<td>4477494</td>
</tr>
<tr>
<td>7261</td>
<td>EE67</td>
<td>94.61</td>
<td>Gümüşhane-Kale</td>
<td>565160</td>
<td>4475253</td>
</tr>
<tr>
<td>8275</td>
<td>GF05</td>
<td>45.92</td>
<td>Güney Arhavi</td>
<td>702745</td>
<td>4556114</td>
</tr>
<tr>
<td>2014</td>
<td>FF64</td>
<td>100.00</td>
<td>Hemsin-Çamlıhemşin</td>
<td>664994</td>
<td>4545006</td>
</tr>
<tr>
<td>1967</td>
<td>FF74</td>
<td>100.00</td>
<td>Hemsin-Çamlıhemşin</td>
<td>674994</td>
<td>4545006</td>
</tr>
<tr>
<td>8317</td>
<td>GF18</td>
<td>96.19</td>
<td>Hopa</td>
<td>714824</td>
<td>4558158</td>
</tr>
<tr>
<td>1974</td>
<td>FE29</td>
<td>100.00</td>
<td>İkizdere Güney</td>
<td>624994</td>
<td>4495006</td>
</tr>
<tr>
<td>1973</td>
<td>FE39</td>
<td>100.00</td>
<td>İkizdere Güney</td>
<td>634994</td>
<td>4495006</td>
</tr>
<tr>
<td>7904</td>
<td>FF30</td>
<td>100.00</td>
<td>İkizdere Güney</td>
<td>634994</td>
<td>4505006</td>
</tr>
<tr>
<td>7906</td>
<td>FF40</td>
<td>100.00</td>
<td>İkizdere Güney</td>
<td>644994</td>
<td>4505006</td>
</tr>
<tr>
<td>7905</td>
<td>FF50</td>
<td>100.00</td>
<td>İkizdere Güney</td>
<td>654994</td>
<td>4505006</td>
</tr>
<tr>
<td>7902</td>
<td>FF51</td>
<td>100.00</td>
<td>İkizdere Güney</td>
<td>654994</td>
<td>4515006</td>
</tr>
<tr>
<td>7879</td>
<td>FF32</td>
<td>100.00</td>
<td>İkizdere Kuzey</td>
<td>634994</td>
<td>4525006</td>
</tr>
<tr>
<td>7670</td>
<td>WL64</td>
<td>30.06</td>
<td>Ilgaz Dağları</td>
<td>60101</td>
<td>4561339</td>
</tr>
<tr>
<td>7647</td>
<td>WL65</td>
<td>100.46</td>
<td>Ilgaz Dağları</td>
<td>61372</td>
<td>4567898</td>
</tr>
<tr>
<td>7658</td>
<td>WL75</td>
<td>90.13</td>
<td>Ilgaz Dağları</td>
<td>70969</td>
<td>4567644</td>
</tr>
<tr>
<td>7699</td>
<td>WL76</td>
<td>100.44</td>
<td>Ilgaz Dağları</td>
<td>72062</td>
<td>4577205</td>
</tr>
<tr>
<td>2087</td>
<td>WM63</td>
<td>100.45</td>
<td>İnebolu – Küre</td>
<td>66939</td>
<td>4647887</td>
</tr>
<tr>
<td>Kare no</td>
<td>Kare kodu</td>
<td>Kare alanı (km²)</td>
<td>Öncelikli Alan Adı</td>
<td>Doğu koordinatı</td>
<td>Kuzey koordinatı</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>7006</td>
<td>VL70</td>
<td>90.49</td>
<td>İşıkdağı</td>
<td>-31911</td>
<td>4524399</td>
</tr>
<tr>
<td>1954</td>
<td>DE19</td>
<td>100.00</td>
<td>Kabaduz – İğdir Dağı</td>
<td>414994</td>
<td>4495007</td>
</tr>
<tr>
<td>7925</td>
<td>FF72</td>
<td>100.00</td>
<td>Kaçkar Dağları</td>
<td>674994</td>
<td>4525006</td>
</tr>
<tr>
<td>7913</td>
<td>FF73</td>
<td>100.00</td>
<td>Kaçkar Dağları</td>
<td>674994</td>
<td>4535006</td>
</tr>
<tr>
<td>7926</td>
<td>FF82</td>
<td>41.04</td>
<td>Kaçkar Dağları</td>
<td>682340</td>
<td>4525981</td>
</tr>
<tr>
<td>7912</td>
<td>FF83</td>
<td>79.17</td>
<td>Kaçkar Dağları</td>
<td>684066</td>
<td>4535475</td>
</tr>
<tr>
<td>7866</td>
<td>FF23</td>
<td>100.00</td>
<td>Kalkandere</td>
<td>624994</td>
<td>4535006</td>
</tr>
<tr>
<td>2023</td>
<td>FF34</td>
<td>58.54</td>
<td>Kalkandere</td>
<td>635866</td>
<td>4543105</td>
</tr>
<tr>
<td>7945</td>
<td>FF90</td>
<td>40.99</td>
<td>Karakale</td>
<td>694021</td>
<td>4507619</td>
</tr>
<tr>
<td>6966</td>
<td>UK89</td>
<td>100.93</td>
<td>Kartalkaya</td>
<td>-122909</td>
<td>4520231</td>
</tr>
<tr>
<td>6969</td>
<td>UK99</td>
<td>100.90</td>
<td>Kartalkaya</td>
<td>-112937</td>
<td>4519544</td>
</tr>
<tr>
<td>8187</td>
<td>WL68</td>
<td>100.46</td>
<td>Kastamonu</td>
<td>63450</td>
<td>4597895</td>
</tr>
<tr>
<td>7014</td>
<td>VK59</td>
<td>80.36</td>
<td>Kızılcahamam - Akyarma</td>
<td>-53736</td>
<td>4515442</td>
</tr>
<tr>
<td>6983</td>
<td>VK88</td>
<td>41.71</td>
<td>Kızılcahamam Doğu</td>
<td>-24995</td>
<td>4505580</td>
</tr>
<tr>
<td>8259</td>
<td>BG50</td>
<td>106.63</td>
<td>Kızılkırmak Deltası</td>
<td>255135</td>
<td>4604946</td>
</tr>
<tr>
<td>8233</td>
<td>BG51</td>
<td>80.09</td>
<td>Kızılkırmak Deltası</td>
<td>253996</td>
<td>4614665</td>
</tr>
<tr>
<td>1996</td>
<td>FE68</td>
<td>97.48</td>
<td>Kuzey Ispir</td>
<td>665023</td>
<td>4885607</td>
</tr>
<tr>
<td>1969</td>
<td>FE79</td>
<td>84.23</td>
<td>Kuzey Ispir</td>
<td>664994</td>
<td>4495006</td>
</tr>
<tr>
<td>2009</td>
<td>FE89</td>
<td>18.99</td>
<td>Kuzey Ispir</td>
<td>681981</td>
<td>4497866</td>
</tr>
<tr>
<td>1921</td>
<td>BF77</td>
<td>77.86</td>
<td>Samsun</td>
<td>274177</td>
<td>4574226</td>
</tr>
<tr>
<td>7750</td>
<td>YL44</td>
<td>67.19</td>
<td>Samsun – Güney Kavak</td>
<td>240901</td>
<td>4547080</td>
</tr>
<tr>
<td>1905</td>
<td>XL57</td>
<td>100.24</td>
<td>Saraydüzü</td>
<td>152697</td>
<td>4581661</td>
</tr>
<tr>
<td>7188</td>
<td>DE56</td>
<td>21.84</td>
<td>Şebinkarahisar Kuzey</td>
<td>455348</td>
<td>4462202</td>
</tr>
<tr>
<td>7265</td>
<td>EE88</td>
<td>100.00</td>
<td>Soğanlı Dağları</td>
<td>584994</td>
<td>4885006</td>
</tr>
<tr>
<td>7225</td>
<td>EE98</td>
<td>100.00</td>
<td>Soğanlı Dağları</td>
<td>594994</td>
<td>4885006</td>
</tr>
<tr>
<td>2007</td>
<td>EE99</td>
<td>100.00</td>
<td>Soğanlı Dağları</td>
<td>594994</td>
<td>4495006</td>
</tr>
<tr>
<td>7269</td>
<td>FE08</td>
<td>100.00</td>
<td>Soğanlı Dağları</td>
<td>604994</td>
<td>4885006</td>
</tr>
<tr>
<td>7264</td>
<td>FE18</td>
<td>100.00</td>
<td>Soğanlı Dağları</td>
<td>614994</td>
<td>4885006</td>
</tr>
<tr>
<td>7168</td>
<td>EE29</td>
<td>100.00</td>
<td>Torul</td>
<td>524994</td>
<td>4495007</td>
</tr>
<tr>
<td>7870</td>
<td>EF63</td>
<td>90.23</td>
<td>Trabzon Merkez</td>
<td>564719</td>
<td>4534562</td>
</tr>
<tr>
<td>122</td>
<td>BE77</td>
<td>89.54</td>
<td>Turhal - Yaylacık Dağı</td>
<td>274817</td>
<td>4475507</td>
</tr>
<tr>
<td>7572</td>
<td>UL82</td>
<td>100.92</td>
<td>Yedigöller</td>
<td>-120893</td>
<td>4550298</td>
</tr>
<tr>
<td>7640</td>
<td>VL46</td>
<td>100.76</td>
<td>Yenice</td>
<td>-58015</td>
<td>4586216</td>
</tr>
<tr>
<td>7888</td>
<td>EF41</td>
<td>100.00</td>
<td>Yukarı Maça Havzası</td>
<td>544994</td>
<td>4515006</td>
</tr>
<tr>
<td>7887</td>
<td>EF50</td>
<td>100.00</td>
<td>Yukarı Maça Havzası</td>
<td>554994</td>
<td>4505006</td>
</tr>
<tr>
<td>1945</td>
<td>EF30</td>
<td>100.00</td>
<td>Zigana</td>
<td>534994</td>
<td>4505007</td>
</tr>
</tbody>
</table>
Öncelikli Alanlar:
Seçilen kareler, bitişkenlikleri, içerdikleri bitki örtüsü ve/veya arazi yapısı tipleri ve bu alanları birbirlerinden ayırır yeryüzü şekilleri dikkate alınarak, 45 koruma öncelikli alan oluşturulacak şekilde gruplanmışlardır. Öncelikli koruma alanları olarak tanımlanan bu gruplar Harita 6.2’de verilmektedir.

Harita 6.2: Karadeniz Bölgesi koruma öncelikli alanlar haritası
Kaynakça

